Statistical Computing

[saac Quintanilla Salinas

Table of contents

Introduction
Preface

Installing R« . o L oL
Installing RStudio L
Installing Quarto L
Installing R Packages
Topics e

I R Programming

1 Basic R Programming

1.1
1.2

1.3

14
1.5

1.6

Introduction e e
Basic Calculations e
1.2.1 Calculator
1.2.2 Comparing Numbers
1.2.3 Help e
Typesof Data o
1.3.1 Numeric e
1.3.2 Logical
1.3.3 POSIX e
1.3.4 Character
1.3.5 Complex Numbers
1.3.6 Raw e e e e e e
1.3.7 Missing e
R Functions e
R Objects o o o
1.5.1 Assigning objects L
1.5.2 Vectors e e e
1.5.3 Matrices L
1.5.4 Arrayso L
1.5.5 Data Frames
1.5.6 Lists o e e e e
R Packages

O © O o VY

10
10

2 Control Flow

2.1 Indexing L
2.1.1 Vectors L
2.1.2 Matrices e e e e e
2.1.3 DataFrames
2.1.4 Lists o e e e e e

2.2 If/Else Statements
221 Example.

2.3 forloops e
2.3.1 Basicforloop
2.3.2 Nested forloops L

2.4 break e e

2.9 mexT e e e

2.6 whileloop e
2.6.1 Basic while loopso
2.6.2 Infinite while loops

3 Functional Programming

3.1 Functions L
3.1.1 Built-in Functions o
3.1.2 Generic Functions L L oo
3.1.3 User-built Functions o

3.2 Ffapply Functions
3.2.1 apply() . . . o
3.2.2 1apply() . . .o
3.23 sapply ()

3.3 Anonymous Functions

4 Scripting and Piping in R

4.1 Commenting
4.2 Scriptingo
4.2.1 Beginning of the Scripto
4.2.2 Middle of the Script
4.2.3 Endof the Seript L
4.3 Pipes. e
431 1> oo
432 Th
4.3.3 K% . e
434 WTSh o o oo e
4.4 Keyboard Shortcuts L

34
34
34
35
35
36
37
38
39
40
42
43
44
45
45
46

48
48
48
49
49
o1
52
52
52
53

5 Further Resources

5.1

5.2

5.3

R Resources o
5.1.1 Programming
5.1.2 Reticulate and Python oL
5.1.3 Repp . - - o o o e
Bayesian Programs
5.2.1 JAGS . . e
5.2.2 Stan e
MiSC . . . e
5.3.1 Missing Semestero

Random Variables and Simulations

Random Variables

6.1 Random Experiments
6.2 Probability
6.3 Independence e
6.4 Random Variables
6.4.1 Discrete RV e
6.4.2 Continuous RV
6.5 Joint Distributions e
6.5.1 Joint Probability Density Function
6.5.2 Conditional Density Functions
6.5.3 Marginal Density Functions o000
6.5.4 Independence and Covariance
6.6 Functions of Random Variables
6.6.1 Method of Distribution Functions
6.6.2 Method of Transformations
6.6.3 Method of Moment-Generating Functions
Models
7.1 Bernoulli Model e
7.1.1 Distribution Functions,
7.1.2 Expected Value
7.1.3 Variance e e e e
7.2 Binomial Model e
7.2.1 Distribution Functions
7.2.2 Expected Value
7.2.3 Variance e
7.3 Poisson Model e e
7.3.1 Distribution Functions
7.3.2 Expected Value

61
61
61
61
61
61
61
61
61
61

62

63
64
64
64
64
64
64
64
64
64
64
64
64
64
64
64

7.3.3 Variance 66

7.4 Negative Binomial Model 0oL 66
7.4.1 Distribution Functions, 66
7.4.2 Expected Value 66
7.4.3 Variance e 66

7.5 Multinomial Model 66
7.5.1 Distribution Functions 66
7.5.2 Expected Value 66
7.5.3 Variance e e 66

7.6 Uniform Model e 66
7.6.1 Distribution Functions 66
7.6.2 Expected Value 66
7.6.3 Variance e e 66

7.7 Normal Model. e 66
7.7.1 Distribution Functions 66
7.72 Expected Value 66
T.7.3 Variance e e e e 66

7.8 Gamma Model 66
7.8.1 Distribution Functions 66
7.8.2 Expected Value 66
7.8.3 Variance e e e e 66

7.9 Beta Model e 66
7.9.1 Distribution Functions, 66
7.92 Expected Value o 66
7.9.3 Variance 66

7.10 Weibull Model e 66
7.10.1 Distribution Functions 66
7.10.2 Expected Value 66
7.10.3 Variance e e 66

Random Number Generator 67

8.1 Random Number Generation 67

8.2 Computer Random Number Generation 67
8.2.1 Linear Congruential Generators 67
8.2.2 Multiple Recursive Generators 67
8.2.3 Modulo 2 Linear Generators., 67

Monte Carlo Methods 68

9.1 Probability Inverse Transformation, 68

9.2 Composition Method 68

9.3 Acceptance-Rejection Method Lo 68

9.4 Box-Muller Methods e 68

10 Markov Chain Monte Carlo Methods

I1l Randomizations
11 Permutation Tests

12 Permutation Regression

IV Monte Carlo Methods

13 Monte Carlo Integration

14 Monte Carlo Hypothesis Testing

15 Monte Carlo Optimization

16 Monte Carlo Methods Case Study 1
17 Monte Carlo Methods Case Study 2

18 Monte Carlo Methods Case Study 3

V Bootstrapping
19 Parametric Bootrapping

20 Nonparametric Boostrapping

VI Data Manipulation, Summarization, and Graphics
Resources
How to read this section.

21 Importing Data

21.1 Directories Lo o
21.2 Importing Data oL,

22 Data Manipulation

22.1 Tidyverse
22.2 Loading Data
2221 CSV Fileso
22.2.2 For This Chapter

69

70
71

72

73
74
75
76
7
78

79

80
81

82

22.3 The Pipe Operator |> 89

22.4 Data Transformation Lo 90
22.4.1 Summarizing Data 90
22.4.2 Grouping e 91
22.4.3 Subsets e 93
22.4.4 Creating Variables o 95
22.4.5 Merging Datasets 97

22.5 Reshaping Data L 98
22.5.1 WidetoLong Data 98
2252 Longto Wide 99
22.5.3 Spliting Variables L Lo 100
22.5.4 Splitting Rows 101
22.5.5 Merging Rows 102

22.6 Applied Example 102

23 Data Summarization 105

23.1 Descriptive Statistics L 105
23.1.1 Point Estimates. 105
23.1.2 Variability 106
23.1.3 Associations 108

23.2 Summarizing with Tidyverse o oo 110

24 Graphics 112

24.1 Base R Plotting 112
24.1.1 Introduction 112
24.1.2 Contents e 112
24.1.3 Basic Graphics 113
24.1.4 Scatter Plot 113
24.1.5 Histogram e 115
24.1.6 Density Plot 117
24.1.7 Box Plots 118
24.1.8 Bar Chart e 119
24.1.9 Pie Chart e 119
24.1.10Grouping e e e 120
24.1.11Tweaking oL 123

24.2 geplot2 e 124
24.2.1 Introduction 124
24.2.2 BasiCs e 124
24.2.3 Scatter Plot 125
24.2.4 Histogram and Density Plot 128
24.2.5 Box Plots e 131
24.2.6 Bar Charts e 132
24.2.7 Grouping e e 133

24.2.8 Themes/Tweaking
24.29 Saving plot

VIl Reporting Data

25 Quarto Documents
25.1 Introduction Lo
25.2 Anatomy of a Quarto Document L.
25.3 Chunk Options o
25.3.1 Global Chunk Options
25.3.2 Local Chunk Options,
25.3.3 Inline Code

25.4 Formatting

25.5 Citations and Referneceso
25.5.1 .bib File

25.6 Math . . .

25.6.2 Greek Letters L
25.7 Rendering a Document L L Lo

HTML . .
PDF . ..

Word Documento
25.8 Resources and Tips L

Quarto . .

RMarkdown e

YAML . .
Tips . . .
25.9 References

26 Presentations

145

146
146
146
147
147
148
150
151
153
154
154
154
155
156
156
157
157
157
157
157
157
158
158

159

Introduction

Welcome to Statistical Computing! A book designed to give undergraduate students exposure
to several topics related to computational statistics and programming in R.

1 Note

This book is a work in progress and will contain several grammatical errors and unfinished
chapters. The final product is expected to be ready by the 2025-26 Academic Year.

This work is published under a CC-BY-4.0 license.

Preface

This is a book created to be used for a statistical computing course at the undergraduate
level.

Installing R

R is an open-source programming language used to conduct statistical analysis. You can freely
download and install R here.

Installing RStudio

RStudio is an Integrated Development Environment (IDE) used for data science. It contains
several tools needed to extend your programming and project management skills.

You can download and install the open-source (free) version of RStudio here.
Installing Quarto
Quarto is a technical documentation system that allows you to embed narrative, code, and

output in one document. Quarto should come automatically install from RStudio; however,
you can update (or install) it here.

https://creativecommons.org/licenses/by/4.0/
https://www.r-project.org/
https://cloud.r-project.org/
https://posit.co/products/open-source/rstudio/
https://en.wikipedia.org/wiki/Integrated_development_environment
https://posit.co/downloads/
https://quarto.org/
https://quarto.org/docs/get-started/

Installing R Packages

R Packages extends the functionality from the base functions in R. R packages contain extra
functions to conduct uncommon statistical models.

As of right now, the tidyverse is a set of comprehensive packages to prepare and analyze data.
To install tidyverse, use the following line in the console:

install.packages("tidyverse")

Topics

Topic

Description

R Programming

Simulations

Randomizations

Monte Carlo Methods

Bootstrapping

Data Manipulation, Summarization, and
Graphics

Reporting Data

Debugging and Efficient Programming

Provide with a brief introduction to R
programming. Topics include basic
computations, control flow statements,
functional programming, and scripting tips
and tricks.

Explore different algorithms to generate
random variables.

Learn how to implement different
permutation tests.

Implement Monte Carlo methods to
approximate integrals and distributions.
Conduct different bootstrapping techniques
to construct confidence intervals.

Learn how to analyze real-world data

Learn how to use Quarto to generate reports
and presentations.

Learn how write efficient R code and
implement Rcpp into your programs.

10

https://www.tidyverse.org/

Part |

R Programming

11

1 Basic R Programming

1.1

This chapter focuses on the basics of R programming. While most of your statistical analysis
will be done with R functions, it is important to have an idea of what is going on. Additionally,
we will cover other topics that you may or may not need to know. The topics we will cover

are:

1.

2
3
4
)

1.2

This section focuses on the basic calculation that can be done in R. This is done by using
different operators in R. The table below provides some of the basic operators R can use:

Introduction

Basic calculations in R

. Types of Data
. R Objects
. R Functions

. R Packages

Basic Calculations

Operator

Description

+

*

or **

Addition
Subtraction
Multiplication
Divides
Exponentiate

Help Documentation

12

1.2.1 Calculator
1.2.1.1 Addition

To add numbers in R, all you need to use the + operator. For example 2 + 2 = 4. When you
type it in R you have:

2 + 2

(1] 4

When you ask R to perform a task, it prints out the result of the task. As we can see above,
R prints out the number 4.

To add more than 2 numbers, you can simply just type it in.

2 + 2 + 2

(1] 6

This provides the number 6.

1.2.1.2 Subtraction

To subtract numbers, you need to use the - operator. Try 4 - 2:

4 -2
[1] 2
Tryd - 6 - 4
4-6-4
[1] -6

Notice that you get a negative number.

Now try 4 + 4 - 2 + 8

13

4 + 4 -2 + 8

[1] 14

1.2.1.3 Multiplication
To multiply numbers, you will need to use the * operator. Try 4 * 4:

4 x 4

[1] 16

1.2.1.4 Division
To divide numbers, you can use the / operator. Try 9 / 3:

9/ 3

(1] 3

1.2.1.5 Exponents

To exponentiate a number to the power of another number, you can use the ~ operator. Try
275:
275

[1] 32

If you want to find €2, you will use the exp() function. Try exp(2):

exp(2)

[1] 7.389056

14

1.2.1.6 Roots

To take the n-th root of a value, use the ~ operator with the / operator to take the n-th root.
For example, to take v/35, type 327 (1/5):

327(1/5)

(1] 2

1.2.1.7 Logarithms
To take the natural logarithm of a value, you will use the log() function. Try log(5):

log(5)

[1] 1.609438

If you want to take the logarithm of a different base, you will use the log() function with
base argument. We will discuss this more in Section 1.4.

1.2.2 Comparing Numbers

Another important part of R is comparing numbers. When you compare two numbers, R will
tell if the statement is TRUE or FALSE. Below are the different comparisons you can make:

Operator Description

> Greater Than

< Less Than

>= Greater than or equal
<= Less than or equal

== Equals

1= Not Equals

1.2.2.1 Less than/Greater than

To check if one number is less than or greater than another number, you will use the > or <
operators. Try 5 > 4:

15

5> 4

[1] TRUE

Notice that R states it’s true. It evaluates the expression and tells you if it’s true or not. Try
5 < 4:

5< 4

[1] FALSE
Notice that R tells you it is false.

1.2.2.2 Less than or equal to/Greater than or equal to

To check if one number is less than or equal to/greater than or equal to another number, you
will use the >= or <= operators. Try 56 >= 5:

5 >=5

[1] TRUE

Try 5 >= 4:

5 >=4

[1] TRUE

Try 5 <= 4

b <=4

[1] FALSE

1.2.2.3 Equals and Not Equals

To check if 2 numbers are equal to each other, you can use the == operator. Try 3 == 3:

16

3 ==

[1] TRUE

Try 4 ==

3::

[1] FALSE

Another way to see if 2 numbers are not equal to each other, you can use the !=. Try 3 !=

[1] TRUE

Try 3 != 3:

3 =3

[1] FALSE

You may be asking why use != instead of ==. They both provides similar results. Well the
reason is that you may need the TRUE output for analysis. One is only true when they are
equal, while the other is true when they are not equal.

In general, the ! operator means not or opposite. It can be used to change an TRUE to a FALSE
and vice-versa.

1.2.3 Help

The last operator we will discuss is the help operator 7. If you want to know more about
anything we talked about you can type ? in front of a function and a help page will pop-
up in your browser or in RStudio’s ‘Help’ tab. For example you can type 7Arithmetic or
7Comparison, to review what we talked about. For other operators we didn’t talk about use
7assignOps and 7Logic.

17

1.3 Types of Data

In R, the type of data, also known as class, we are using dictates how the programming works.
For the most part, users will use numeric, logical, POSIX and character data types. Other
types of data you may encounter are complex and raw. To obtain more information on them,
use the 7 operator.

1.3.1 Numeric

The numeric class is the data that are numbers. Almost every analysis that you use will be
based on the numeric class. To check if you have a numeric class, you just need to use the
is.numeric() function. For example, try is.numeric(5):

is.numeric(5b)

[1] TRUE

Numeric classes are essentially double and integer types of data. For example a double
data is essentially a number with decimal value. An integer data are whole numbers. Try
is.numeric(5.63), is.double(5.63) and is.integer(5.63):

is.numeric(5.63)

[1] TRUE

is.double(5.63)

[1] TRUE

is.integer(5.63)

[1] FALSE

Notice how the value 5.63 is a numeric and double but not integer. Now let’s try
is.numeric(7), is.double(7) and is.integer(7):

18

is.numeric(7)

[1] TRUE

is.double(7)

[1] TRUE

is.integer(7)

[1] FALSE

Notice how the value 7 is also considered a numeric and double but not integer. This is because
typing a whole number will be stored as a double. However, if we need to store an integer, we
will need to type the letter “L” after the number. Try is.numeric(7L), is.double(7L), and
is.integer(7L):

is.numeric(7L)

[1] TRUE

is.double(7L)

[1] FALSE

is.integer(7L)

[1] TRUE

1.3.2 Logical

A logical class are data where the only value is TRUE or FALSE. Sometimes the data is coded
as 1 for TRUE and O for FALSE. The data may also be coded as T or F. To check if data belongs
in the logical class, you will need the is.logical() function. Try is.logical(3 < 4):

19

is.logical(3 < 4)

[1] TRUE

This is same comparison from Section 1.2.2. The output was TRUE. Now R is checking whether
the output is of a logical class. Since it it, R returns TRUE. Now try is.logical(3 > 4):

is.logical(3 > 4)

[1] TRUE

The output is TRUE as well even though the condition 3 > 4 is FALSE. Since the output is a
logical data type, it is a logical variable.

1.3.3 POSIX

The POSIX class are date-time data. Where the data value is a time component. The POSIX
class can be very complex in how it is formatted. IF you would like to learn more try ?POSIXct
or 7POSICLlt. First, lets run Sys.time() to check what is today’s data and time:

Sys.time()

[1] "2024-03-16 23:10:01 PDT"

Now lets check if its of POSIX class, you can use the class() function to figure out which
class is it. Try class(Sys.time()):

class(Sys.time())

[1] "POSIXct" "POSIXt"

1.3.4 Character

A character value is where the data values follow a string format. Examples of character values
are letters, words and even numbers. A character value is any value surrounded by quotation
marks. For example, the phrase “Hello World!” is considered as one character value. Another
example is if your data is coded with the actual words “yes” or “no”. To check if you have
character data, use the is.character () function. Try is.character("Hello World!"):

20

is.character("Hello World!")

[1] TRUE

Notice that the output says TRUE. Character values can be created with single quotations. Try
is.character('Hello World!'):

is.character('Hello World!')
[1] TRUE

1.3.5 Complex Numbers

Complex numbers are data values where there is a real component and an imaginary component.
The imaginary component is a number multiplied by ¢ = v/—1. To create a complex number,
use the complex () function. To check if a number is complex, use the is.complex () function.

Try the following to create a complex number complex(1l, 4, 5):

complex(1, 4, 5)

[1] 4+5i

Now try is.complex(complex(1l, 4, 5)):

is.complex(complex (1, 4, 5))

[1] TRUE

1.3.6 Raw

You will probably never use raw data. I have never used raw data in R. To create a raw value,
use the raw() or charToRaw() functions. Try charToRaw('Hello World!"'):

charToRaw('Hello World!')

[1] 48 65 6¢c 6¢c 6f 20 57 6f 72 6¢c 64 21

21

To check if you have raw data, use the is.raw() function. Try is.raw(charToRaw('Hello
World!')):

is.raw(charToRaw('Hello World!'))

[1] TRUE

1.3.7 Missing

The last data class in R is missing data. The table below provides a brief introduction of the
different types of missing data

Value Description Functions

NULL These are values indicating an object is empty. Often is.null()
used for functions with values that are undefined.

NA Stands for “Not Available”, used to indicate that the is.na()
value is missing in the data.

NaN Stands for “Not an Number”. Used to indicate a missing is.nan()
number.

Inf and -Inf Indicating an extremely large value or a value divided by is.infinite()
0.

1.4 R Functions

An R function is the procedure that R will execute to certain data. For example, the log(x)
is an R function. It takes the value x and provides you the natural logarithm. Here x is known
as an argument which needs to be specified to us the log() function. Find the log(x = 5)

log(x = 5)

[1] 1.609438

Another argument for the log() function is the base argument. With the previous code, we
did not specify the base argument, so R makes the base argument equal to the number e. If
you want to use the common log with base 10, you will need to set the base argument equal
to 10.

Try log(x = 5, base = 10)

22

log(x = 5, base = 10)

[1] 0.69897

Now try log(5,10)

log(5,10)

[1] 0.69897

Notice that it provides the same value. This is because R can set arguments based on the
values position in the function, regardless if the arguments are specified. For log(5,10), R
thinks that 5 corresponds to the first argument x and 10 is the second argument base.

To learn more about a functions, use the ? operator on the function: ?log.

1.5 R Objects

R objects are where most of your data will be stored. An R object can be thought of as a
container of data. Each object will share some sort of characteristics that will make the unique
for different types of analysis.

1.5.1 Assigning objects

To create an R object, all we need to do is assign data to a variable. The variable is the
name of the R object. it can be called anything, but you can only use alphanumeric values,
underscore, and periods. To assign a value to a variable, use the <- operator. This is known
a left assignment. Kinda like an arrow pointing left. Try assigning 9 to ‘x’ (x <- 9):

x <= 9

To see if x contains 9, type x in the console:

X

(11 9

Now x can be treated as data and we can perform data analysis on it. For example, try
squaring it:

23

x"2

[1] 81

You can use any mathematical operation from the previous sections. Try some other operations
and see what happens.

The output R prints out can be stored in a variable using the asign operator, <-. Try storing
x~3 in a variable called x_cubed:

x_cubed <- x73

To see what is stored in x_cubed you can either type x_cubed in the console or use the print ()
function with x_cubed inside the parenthesis.

x_cubed

[1] 729

print (x_cubed)

[1] 729

1.5.2 Vectors

A vector is a set data values of a certain length. The R object x is considered as a numerical
vector (because it contains a number) with the length 1. To check, try is.numeric(x) and
is.vector(x):

is.numeric(x)

[1] TRUE

is.vector(x)

[1] TRUE

24

Now let’s create a logical vector that contains 4 elements (have it follow this sequence: T, F,
T, F) and assign it to y. To create a vector use the c()! function and type all the values and
separating them with columns. Type y <- ¢(T, F, T, F):

y <= c(T, F, T, F)

Now, lets see how y looks like. Type y:

y

[1] TRUE FALSE TRUE FALSE
Now lets see if it’s a logical vector:

is.logical(y)

[1] TRUE

is.vector(y)

[1] TRUE

Fortunately, this vector is really small to count how many elements it has, but what if the
vector is really large? To find out how many elements a vector has, use the length() function.
Try length(y):

length(y)

(1] 4

IThe c() function allows you to put any data type and as many values as you wish. The only condition of a
vector is that it must be the same data type.

25

1.5.3 Matrices

A matrix can be thought as a square or rectangular grid of data values. This grid can be
constructed can be any size. Similar to vectors they must contain the same data type. The
size of a matrix is usually denoted as n x k, where n represents the number of rows and k

represents the number of columns. To get a rough idea of how a matrix may look like, type
matrix(rep(1,12), nrow = 4, ncol = 3)%

matrix(rep(l, 12), nrow = 4, ncol = 3)

[,11 [,2]1 [,3]
[1,] 1 1 1
[2,] 1 1 1
(3,] 1 1 1
[(4,] 1 1 1

Notice that this is a 4 x 3 matrix. Each element in the matrix has the value 1. Now try this
matrix(rbinom(12,1.5), nrow = 4, ncol = 3)3:

matrix(rbinom(12, 1, .5), nrow = 4, ncol = 3)

[,11 [,2]1 [,3]
[1,] 1 1 0

[2,] 0 1 0
[3,] 1 0 0
4,] 1 0 1

Your matrix may look different, but that is to be expected. Notice that some elements in a
matrix are 0’s and some are 1’s. Each element in a matrix can hold any value.

An alternate approach to creating matrices is with the use of rbind() and cbind() functions.
Using 2 vectors, and matrices, of the same length, the rbind () will append the vectors together

by each row. Similarly, the cbind () function will append vectors, and matrices, of the same
length by columns.

2The function rep() creates a vector by repeating a value for a certain length. rep(1,12) creates a vector of

length 12 with each element being 1. We use the nrow and ncol arguments in the function to specify the
number of rows and columns, respectfully.

3The rbinom() function generates binomial random variables and stores them in a vector. rbinom(12,1,5)
This creates 12 random binomial numbers with parameter n =1 and p = 0.5.

26

x <- 1:4
y <- 5:8
z <- 9:12
cbind(x, y, z)

X
[1,1 1
[2,] 2
[3,] 3711
[4,] 4 8 12

rbind(x, y, 2)

[,11 [,2]1 [,3] [,4]
x 1 2 3 4
y 5 6 7 8
z 9 10 11 12

If you want to create a matrix of a specific size without any data, you can use the matrix()

function and only specify the nrow and ncol arguments. Here we are creating a 5 x 11 empty
matrix:

matrix(nrow = 5, ncol = 11)

(,11 [,21 [,31 (,4]1 [,5]1 [,6]1 [,7]1 [,8] [,9]1 [,10] [,11]
[1,] NA NA NA NA NA NA NA NA NA NA NA
[2,] NA NA NA NA NA NA NA NA NA NA NA
[3,] NA NA NA NA NA NA NA NA NA NA NA

[4,] NA NA NA NA NA NA NA NA NA NA NA
(5,1] NA NA NA NA NA NA NA NA NA NA NA

Lastly, if you need to find out the dimensions of a matrix, you can use dim() function on a
matrix:

dim(matrix(nrow = 5, ncol = 11))

[1] 5 11

This will return a vector of length 2 with the first element being the number of rows and the
second element being the number of columns.

27

1.5.4 Arrays

Matrices can be considered as a 2-dimensional block of numbers. An array is an n-dimensional
block of numbers. While you may never need to use an array for data analysis. It may come
in handy when programming by hand. To create an array, use the array () function. Below is
an example of a 3 x 3 x 3 with the numbers 1, 2, and 3 representing the 3rd dimension stored
in an R object called first_array®.

(first_array <- array(c(rep(l, 9), rep(2, 9), rep(3, 9)),
dim=c(3,3,3)))

[,11 [,2]1 [,3]
[1,] 1 1 1
(2,1 1 1 1
[3,] 1 1 1

[,11 [,2]1 [,3]
[1,] 2 2 2
[2,] 2 2 2
[3,] 2 2 2

[,11 [,21 [,3]
[1,] 3 3 3
[2,] 3 3 3
[3,] 3 3 3

1.5.5 Data Frames

Data frames are similar to data set that you may encounter in an excel file. However, there are
a couple of differences. First, each row represents an observation, and each column represents
a characteristic of the observation. Additionally, each column in a data frame will be the same
data type. To get an idea of what a data frame looks like, try head (iris) °:

4Notice the code is surrounded by parenthesis. This tells R to store the array and print out the results. You
can surround code with parenthesis every time you create an object to also print what is stored.
5The head () function just tells R to only print the top few components of the data frame.

28

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

In the data frame, the rows indicate a specific observation and the columns are the values of
a variable. In terms of the iris data set, we can see that row 1 is a specific flower that has a
sepal length of 5.1. We can also see that flower 1 has other characteristics such as sepal width
and petal length. Lastly, there are results for the other flowers.

Now try tail(iris):

tail(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

The tail () function provides the last 6 rows of the data frame.

Lastly, if you are interested in viewing a specific variable (column) from a data frame, you can
use the $ operator to specify which variable from a specific data frame. For example, if we
are interested in observing the Sepal.Length variable from the iris data frame, we will type
iris$Sepal.Length:

iris$Sepal.Length

[1] 5.1 4.9 4.7 4.6 5.0 5.4 4.6 5.0 4.4 4.95.4 4.8 4.8 4.35.85.75.45.1
[19] 5.7 5.1 5.4 5.1 4.6 5.1 4.85.05.05.25.24.74.85.45.25.54.95.0
[37] 5.5 4.9 4.45.15.04.54.45.05.14.85.14.65.35.07.06.46.95.5
[65] 6.5 5.7 6.3 4.9 6.6 5.25.05.96.06.15.66.75.65.86.25.65.96.1
[73] 6.3 6.1 6.4 6.6 6.86.76.05.75.55.55.86.05.46.06.76.35.65.5

29

[91] 5.5 6.1 5.8 5.0 5.6 5.7 5.7 6.2 5.15.76.35.87.16.36.57.64.97.3
[109] 6.7 7.2 6.5 6.4 6.8 5.7 5.8 6.46.57.77.76.06.95.67.76.36.77.2
[127] 6.2 6.1 6.4 7.2 7.47.96.46.36.17.76.36.46.06.96.76.95.86.8
[145] 6.7 6.7 6.3 6.5 6.2 5.9
1.5.6 Lists

To me a list is just a container that you can store practically anything. It is compiled of
elements, where each element contains an R object. For example, the first element of a list
may contain a data frame, the second element may contain a vector, and the third element
may contain another list. It is just a way to store things.

To create a list, use the 1list() function. Create a list compiled of first element with the
mtcars data set, second element with a vector of zeros of size 4, and a matrix 3 x 3 identity
matrix®. Store the list in an object called 1ist_one:

list_one <- list(mtcars, rep(0, 4),
diag(rep(1, 3)))

Type list_one to see what pops out:

list_one
[[11]

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0O 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 O 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 O 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 O 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 O 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 O 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 O 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 O 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 O 3 3
Merc 4508SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 O 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 O 3 4

SAn identity matrix is a matrix where the diagonal elements are 1 and the non-diagonal elements are 0

30

Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 O 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 O 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 O 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 O 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 O 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 O 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 O 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 156.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
[[2]1]

[11 000O0

[[3]]

[,11 [,2] [,3]
[1,] 1 0 0
[2,] 0 1 0
[3,] 0 0 1

Each element in the list is labeled as a number. It is more useful to have the elements named.
An element is named by typing the name in quotes followed by the = symbol before your object
in the 1ist () function (mtcars=mtcars).

list_one <- list(mtcars = mtcars,
vector = rep(0, 4),
identity = diag(rep(1l, 3)))

Here I am creating an object called 1ist_one, where the first element is mtcars labeled
mtcars, the second element is a vector of zeros labeled vector and the last element is the
identity matrix labeled identity’

Now create a new list called list _two and store list_one labeled as list_one and
first_array labeled as array

31

(list_two <- list(list_one
array = first_array))

$list_one
$list_one$mtcars

Mazda RX4

Mazda RX4 Wag
Datsun 710

Hornet 4 Drive
Hornet Sportabout
Valiant

Duster 360

240D

230

Merc
Merc
Merc 280
Merc 280C
Merc 450SE
Merc 450SL
Merc 450SLC

Cadillac Fleetwood
Lincoln Continental

Chrysler Imperial
Fiat 128

Honda Civic
Toyota Corolla
Toyota Corona
Dodge Challenger
AMC Javelin
Camaro 728
Pontiac Firebird
Fiat X1-9
Porsche 914-2
Lotus Europa
Ford Pantera L
Ferrari Dino
Maserati Bora
Volvo 142E

$list_one$vector
[11 000O0

mpg cyl

DO NOD O WN WM OB D DD WD 0NOD WE N D OO

(@)

> 00 O 00 > > D> 00 0 00 00 > b I P> 00 00 00 0 0 0 OO OO b O D

list_one,

Q.
[N
2]
o)

160.
160.
108.
258.
360.
225.
360.
146.
140.
167.
167.
275.
275.
275.
472.
460.
440.

78.

75.

71.
120.
318.
304.
350.
400.

79.
120.

95.
351.
145.
301.
121.

O O OO FF WOOOOOFRr P, N NOOOWOMmMOOKWmMOoOOOWNOOO O o OoOo

hp
110
110
93
110
175
105
245
62
95
123
123
180
180
180
205
215
230
66
52
65
97
150
150
245
175
66
91
113
264
175
335
109

Q.
=
V]
ct

32

DWW W DWW WN WD DWW WWWWWWWWNWWWWW

H OO NN OO NEFE NNNOONOWOOOWWWOWOHONNEREOOWO O
B NNN W00 WO oOONWOWWOWNNNNDMNNDNOFROOw o OO
N WNWEFENEFE WWWWNEEFEDNOOOWWPHE WwWwwwwwwwNnNDN

wt

.620
.875
.320
.215
.440
.460
.570
.190
.150
.440
.440
.070
.730
.780
.250
.424
.345
.200
.615
.835
.465
.520
.435
.840
.845
.935
.140
.513
.170
.770
.570
.780

gsec vs am gear carb

16.
17.
18.
19.
17.
20.
15.
20.
22.
18.
18.
17.
17.
18.
17.
17.
17.
19.
18.
19.
20.
16.
17.
15.
17.
18.
16.
16.
14.
15.
14.
18.

46
02
61
44
02
22
84
00
90
30
90
40
60
00
98
82
42
47
52
90
01
87
30
41
05
90
70
90
50
50
60
60

0

P O OO FrR OFr O0OO0OO0OO0OFr R, PP OOOODOOFrKFFP, P OFORFREFELO

=, P, PR, O 0000, P P OOO0ODO0OO0ODO0O0DO0OO0ODO0OO0OOO0OOO P -

4

01T OO OO WWWW WD DPRWWWWW WP PDWWW WD

N OO NNEFEFNPENNERERNNERE PR DWW PNONNPRDEREDNDRE P DD

$list_one$identity

[,11 [,2] [,3]
[1,] 1 0 0
0
1

[,11 [,2]1 [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1

[,11 [,2]1 [,3]
[1,] 2 2 2
[2,] 2 2 2

[1,] 3 3 3
[2,] 3 3 3
(3,] 3 3 3

1.6 R Packages

As T stated before, R can be extended to do more things, such as create this tutorial.
This is done by installing R packages. An R package can be thought of as extra soft-
ware. This allows you to do more with R. To install an R package, you will need to use
install.packages ("NAME_OF_PACKAGE"). Once you install it, you do not need to install it
again. To use the R package, use library ("NAME_QOF_PACKAGE"). This allows you to load the
package in R. You will need to load the package every time you start R. For more information,
please watch the video: https://vimeo.com/203516241.

33

https://vimeo.com/203516241

2 Control Flow

2.1 Indexing

2.1.1 Vectors

In the Section 1.5, we discussed about different types of R objects. For example, a vector can
be a certain data type with a set number of elements. Here we construct a vector called x
increasing from -5 to 5 by one unit:

(x <- -5:5)

[1] -6 -4-3-2-1 0 1 2 3 4 5

The vector x has 11 elements. If I want to know what the 6th element of x, I can index the 6th
element from a vector. To do this, we use [] square brackets on x to index it. For example,
we index the 6th element of x:

x[6]

(11 0

When ever we use [] next to an R object, it will print out the data to a specific value inside
the square brackets. We can index an R object with multiple values:

x[1:3]

[1] -5 -4 -3
x[c(3,9)]
[1] -3 3

Notice how the second line uses the c(). This is necessary when we want to specify non-
contiguous elements. Now let’s see how we can index a matrix

34

2.1.2 Matrices

A matrix can be indexed the same way as a vector using the [] brackets. However, since the
matrix is a 2-dimensional objects, we will need to include a comma to represent the different
dimensions: [,]. The first element indexes the row and the second element indexes the
columns. To begin, we create the following 4 x 3 matrix:

(x <- matrix(1:12, nrow = 4, ncol = 3))

[,11 [,2]1 [,3]
[1,] 1 5 9

[2,] 2 6 10
(3,1 3 7 11
[4,] 4 8 12

Now to index the element at row 2 and column 3, use x[2, 3]:

x[2, 3]

[1] 10

We can also index a specific row and column:

x[2,]

[1] 2 6 10

x[,3]
[1] 9 10 11 12

2.1.3 Data Frames

There are several ways to index a data frame, since it is in a matrix format, you can index it
the same way as a matrix. Here are a couple of examples using the mtcars data frame.

mtcars[, 2]

[1] 66 4686844668888884444888844486284

35

mtcars([2,]

mpg cyl disp hp drat wt qgsec vs am gear carb
Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4

However, a data frame has labeled components, variables, we can index the data frame with
the variable names within the brackets:

mtcars[, "cyl"]

[1] 66 4686844668888884444888844486284

Lastly, a data frame can be indexed to a specific variable using the $ notation as described in
Section 1.5.5.

2.1.4 Lists

As described in Section 1.5.6, lists contain elements holding different R objects. To index a
specific element of a list, you will use [[1] double brackets. Below is a toy list:

toy_list <- list(mtcars = mtcars,
vector = rep(0, 4),
identity = diag(rep(1, 3)))

To access the second element, vector element, you can type toy_list[[2]]

toy_list[[2]]

[1J 0000

Since the elements are labeled within the list, you can place the label in quotes inside [[1]:

toy_list[["vector"]]

[1] 0000

The element can be accessed using the $ notation with a list:

36

toy_list$vector

[1] 0000

Lastly, you can further index the list if needed, we can access the mpg variable in mtcars from
the toy_list:

toy_list$mtcars$mpg

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.
[16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.
[31] 15.0 21.4

toy_list[["mtcars"]]$mpg

[1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.
[16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.
[31] 15.0 21.4

toy_list$mtcars[, 'mpg']

(1] 21.0 21.0 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.
[16] 10.4 14.7 32.4 30.4 33.9 21.5 15.5 15.2 13.3 19.2 27.3 26.0 30.4 15.8 19.
[31] 15.0 21.4

2.2 If/Else Statements

In R, there are control flow functions that will dictate how a program will be executed. The
first set of functions we will talk about are if and else statements. First, the if statement
will evaluate a task, If the conditions is satisfied, yields TRUE, then it will conduct a certain
task, if it fails, yields FALSE, the else statement will guide it to a different task. Below is a
general format:

37

Important Concept

if (condition) {
TRUE task

} else {
FALSE task

2.2.1 Example

Below is an example where we generate x from a standard normal distribution and print the
statement ‘positive’ or ‘non-positive’ based on the condition x > 0.

x <- rnorm(1)

1f statements
if (x > 0){
print ("Positive")
} else {
print ("Non-Positive")

}

[1] "Non-Positive"

What if we want to print the statement ‘negative’ as well if the value is negative? We will then
need to add another if statement after the else statement since x > 0 only lets us know if
the value is positive.

x <- rnorm(1)
if (x > 0){

print ("Positive")
} else if (x < 0) {

print("Negative")
}

[1] "Positive"

38

Above, we add the if statement with condition (x < 0) indicating if the number is negative.
Lastly, if x is ever 0, we will want R to let us know it is 0. We can achieve this by adding one
last else statement:

x <- rnorm(1)

if (x > 0){
print ("Positive")
} else if (x < 0) {
print ("Negative")
} else {
print ("Zero")
}

[1] "Negative"

2.3 for loops

A for loop is a way to repeat a task a certain amount of times. Every time a loop repeats a
task, we state it is an iteration of the loop. For each iteration, we may change the inputs by
a certain way, either from an indexed vector, and repeat the task. The general anatomy of a
loop looks like:

Important Concept

for (i in vector){
perform task

by

The for statement indicates that you will repeat a task inside the brackets. The i in the
parenthesis controls how the task will be completed. The in statement tells R where i can
look for the values, and vectorr is a vector R object that contains the values i can be. It also
controls how many times the task will be repeated based on the length of the vector.

Learning about a loop is quite challenging, my recommendation is to read the section below
and break the example code so you can understand how a for loop works.

39

2.3.1 Basic for loop

Let’s say we want R to print one to five separately. We can achieve this by repeating the
print () 5 times.

print(1); print(2); print(3); print(4); print(5)

(1] 1
(1] 2
(1] 3
(1] 4
(1] 5

However, this takes quite awhile to type up. Let’s try to achieve the same task using a for
loop.

for (i in 1:5){
print (i)
}

[1]
[1]
[1]
[1]
[1]

O WN -

Here, i will take a value from the vector 1:5,! Then, R will print out what the value of 1 is.

Now, let’s try another example with letters. To begin, create a new vector called letters_10
containing the first 10 letters of the alphabet. Use the vector letters to construct the neww
vector.

IType this in the console to see what it is.

40

letters 10 <- letters[1:10]

Now, we will use a loop to print out the first 10 letters:

for (i in 1:10) {
print(letters_10[i])

}

[1] "a"
[1] "b"
[1] "c"
[1] "d"
[1] "e"
[1] "£"
(11 "g"
[1] "h"
[1] "1
(11 5"

Here, we have i take on the values 1 through 10. Using those values, we will index the vector
letters_10 by i. The resulting letter will then be printed. This task repeated 10 times.

Lastly, we can replace 1:10 by letters_10 instead:

for (i in letters_10){

print (i)

}

(1] "a"
(1] "b"
[1] "c"
[1] "a"
[1] "e"
[1] "f"
[1] "g"
[1] "h"
(1] "i"
(11 "j"

This is because letters_10 are the values that we want to print and i takes on the value of
letters_10 each time.

41

2.3.2 Nested for loops

A nested for loop is a loop that contain a loop within. Below is an example of 3 for loops
nested within each other. Below is a general example:

Important Concept

for (i in vector_1) {
for (ii in vector_2) {
for (iii in vector_3) {
perform task
}
}
}

As an example, we will use the greekLetter: :2 and use the greek_vector vector to obtain
greek letters in R. Lastly, create a vector called greek_10.

library(greekLetters)
greek_10 <- greek_vector[1:10]

For this example, we want R to print “a” and “a” together as demonstrated below?:

print (pasteO(letters_10[1], greek_10[1]))

[1] ||a "

Now let’s repeat this process to print all possible combinations of the first 3 letters and 3 greek
letters:

for (i in 1:3){
for (ii in 1:3){
print(pasteO(letters_10[i], greek_10[ii]))
}
}

2install.packages(greekLetters)
3We will need to use paste0() to combine the letters together.

42

[1] lla n

[1] "a"
(1] "a"
[1] "b "
[1] "o
[1] "b "
[1] "c
(1] "c
[1] "c
2.4 break

A break statement is used to stop a loop midway if a certain condition is met. A general setup
of break statement goes as follows:

Important Concept

for (i in vector){
if (condition) {break}
else {
task
}
+

As you can see there is an if statement in the loop. This is used to tell R when to break the
loop. If the if statement was not there, then the loop will break without iterating.

To demonstrate the break statement, we will simulate from a N(1,1) until we have 30 positive
numbers or we simulate a negative number.

x <- rep(NA,length = 30)

for (i in seq_along(x)){
y <- rnorm(1,1)
if (y<0) {
break
}
else {
x[i] <- y
}

}
print(x)

43

[1] 0.2822247 NA NA NA NA NA NA

[8] NA NA NA NA NA NA NA
[15] NA NA NA NA NA NA NA
[22] NA NA NA NA NA NA NA
[29] NA NA
print (y)

[1] -0.06732581

Notice that the vector does not get filled up all the way, that is because the loop will break
once a negative number is simulated

2.5 next

Similar to the break statement, the next statement is used in loops that will tell R to move
on to the next iteration if a certain condition is met.

Important Note

for (i in vector){
if (condition) {
next
} else {
task
}
}

The main difference here is that a next statement is used instead of a break statement.

Going back to simulating positive numbers, we will use the same setup but change it to a next
statement.

x <- rep(NA,length = 30)
for (i in seq_along(x)){

y <= rnorm(1,1)
if (y<0) {

44

next

}
else {
x[i] <- y

+
}
print(x)

[1] 1.7209191 0.1896949 NA 1.0792022 NA 2.1369064 0.6085387

(8] NA 0.5623279 2.4101566 3.2359326 1.4701157 0.6353537 2.6892720
[15] NA 0.2331778 3.0216481 NA 1.6867428 1.0063384 0.6367926
[22] NA 3.4886272 1.3408562 0.3545091 1.5495891 0.8707791 NA

[29] 1.5991112 1.3069543

As you can see, the vector contains missing values, these were the iterations that a negative
number was simulated.

2.6 while loop

The last loop that we will discuss is a while loop. The while loop is used to keep a loop running
until a certain condition is met. To construct a while loop, we will use the while statement
with a condition attached to it. In general, a while loop will have the following format:

Important Concept

while (condition) {
task
update condition

}

Above, we see that the while statement is used followed by a condition. Then the loop will
complete its task and update the condition. If the condition yields a FALSE value, then the
loop will stop. Otherwise, it will continue.

2.6.1 Basic while loops

To implement a basic while loop, we will work on the previous example of simulating positive
numbers. We want to simulate 30 positive numbers from N (0, 1) until we have 30 values. Here,
our condition is that we need to have 30 numbers. Therefore we can use the following code to
simulate the values:

45

x <= cO
size <- 0
while (size < 30){
y <= rnorm(1)
if (y > 0) {
x <= c(x, y)
}
size <- length(x)
}

print (size)

[1] 30

print(x)

[1] 0.27075614 0.68213351 0.64117300 0.09325178 0.25511193
[7] 0.99696727 0.49154805 1.12825620 0.03624028 0.64491023
[13] 0.46394449 0.05552212 0.39188109 0.50643163 0.47071310
[19] 0.02597452 1.33588515 0.24634318 0.28013134 0.04718407
[25] 0.85088606 0.31027703 1.06482412 0.28022502 1.31905554

0.84847289
1.61245622
1.19085171
1.46137496
0.28745050

Notice that we do not use an else statement. This is because we do not need R to complete

a task if the condition fails.

2.6.2 Infinite while loops

With while loops, we must be weary about potential infinite loops. This occurs when the
condition will never yield a FALSE value. Therfore, R will never stop the loop because it does

not know when to do this.

For example, let’s say we are interest if y = sin(x) will converge to a certain value. As you
know it will not converge to a certain value; however, we can construct a while loop:

x <- 1
diff <- 1
while (diff > 1e-20) {
old_x <- x
x <-x + 1
diff <- abs(sin(x) - sin(old_x))
}

46

print (x)
print(diff)

My condition above is to see if the absolute difference between sequential values is smaller than
1072°. As you may know, the absolute difference will never become that small. Therefore, the
loop will continue on without stopping.

To prevent an infinite while loop, we can add a counter to the condition statement. This
counter will also need to be true for the loop to continue. Therefore, we can arbitrarily stop
it when the loop has iterated a certain amount of times. We just need to make sure to add
one to the counter every time it iterates it. Below is the code that adds a counter to the while
loop:

x <-1
counter <- 0
diff <- 1

while (diff > 1e-20 & counter < 1073) {
old x <- x
x <-x +1
diff <- abs(sin(x) - sin(old_x))
counter <- counter + 1

}
print (x)

[1] 1001

print(diff)

[1] 0.09311106

print (counter)

[1] 1000

47

3 Functional Programming

3.1 Functions

The functionality in R is what makes it completely powerful compared to other statistical
software. There are several pre-built functions, and you can extend R’s functionality further
with the use of R Packages.

3.1.1 Built-in Functions

There are several available functions in R to conduct specific statistical methods. The table
below provides a set of commonly used functions:

Functions Description

aov() Fits an ANOVA Model
Im() Fits a linear model
glm() Fits a general linear model

t.test() Conducts a t-test

Several of these functions have help documentation that provide the following sections:

Section Description

Description Provides a brief introduction of the function
Usage Provides potential usage of the function
Arguments Arguments that the function can take

Details An in depth description of the function

Value Provides information of the output produced by the function
Notes Any need to know information about the function
Authors Developers of the function

References References to the model and function

See Also Provide information of supporting functions
Examples Examples of the function

48

To obtain the help documentation of each function, use the ? operator and function name in
the console pane.

3.1.2 Generic Functions

Commonly used functions, such as summary() and plot() functions, are considered generic
functions where their functionality is determined by the class of an R object. For example,
the summary () function is a generic function for several types of functions: summary.aov(),
summary.1lm(), summary.glm(), and many more. Therefore, the appropriate function is needed
depending the type of R object. This is where generic functions come in. We can use a generic
function, ie summary (), to read the type of object and then apply to correct procedure to the
object.

3.1.3 User-built Functions

While R has many capable functions that can be used to analyze your data, you may need to
create a custom function for specific needs. For example, if you find yourself writing the same
to repeat a task, you can wrap the code into a user-built function and use it for analysis.

To create a user-built function, you will using the function() to create an R object that is
a function. To use the function Inside the funtion() parentheses, write the arguments that
need to specified for your function. These are arguments you choose for the function.

3.1.3.1 Anatomy
In general function we construct a function with the following anatomy:

name_of function <- function(data_1, data 2 = NULL,
argument_1, argument_2 = TRUE, argument_3 = NULL,
o0Aq
Conduct Task
Conduct Task
output_object <- Tasks
return(output_object)

3

Here, we are creating an R function called name_of_function that will take the following
arguments: data_1, data_2, argument_1, argument_2, argument_3, and From this
function, it requires us to supply data for data_1 and argument_1. Arguments data_2 and
argument_3 are not required, but can be utilized in the function if necessary. Argument
argument_2 is also required for the function, but it it has a default setting (in this case TRUE)

49

if it is not specified. Lastly, the ... argument allows you to pass other arguments to R built
in functions if they are present. For example, we may use the plot() to create graphics and
want to manipulate the output plot further, but do not want to specify the arguments in the
user-based function. In the function itself, we will complete the necessary tasks and then use
the return() to return the output.

3.1.3.2 Example
To begin, let’s create a function that squares any value:

x_square <- function(x){x"2}

Above, [am creating a new function called x_square and it will take values of x and square
it. Here are a couple of examples of x_square():

x_square (4)

[1] 16

x_square (5)

[1] 25

The mtcars data set has several numeric variables that can be used for analysis. Let’s say
we want to apply a function (x_square()) to the sum of a specific variable and return the
value. Then let’s further complicate the function by allowing the sum of 2 variables, take the
log of the sum and dividing the value if necessary. Below is the code for such function called
summing:

summing <- function(vecl, vec2 = NULL, FUN, log_val = FALSE, divisor_val = NULL){
FUN <- match.fun(FUN)
wk_vec <- c(vecl, vec2)
fun sum_val <- FUN(sum(wk_vec))
lval <- NULL
if (isTRUE(log_val)){
lval <- log(fun_sum_val)
} else {
lval <- fun_sum_val

}

50

if (!is.null(divisor_val)){
dval <- divisor_val

} else {dval <- 1}

output <- lval/dval

return(output)

Now let’s try obtaining the

sum(mtcars$mpg) ~2

[1] 413320.4

summing (mtcars$mpg, FUN = x_square)

[1] 413320.4

log(sum(c (mtcars$mpg,mtcars$disp)) ~2)

[1] 17.98088

summing (mtcars$mpg, mtcars$disp, x_square, T)

[1] 17.98088

log(sum(c(mtcars$mpg,mtcars$disp))~2)/5

[1] 3.596177

summing (mtcars$mpg, mtcars$disp, x_square, T, 5)

[1] 3.596177

3.2 *apply Functions

*apply functions are used to iterate a function through a set of elements in a vector, matrix,
or list. This will then return a vector or list depending on what is requested.

51

3.2.1 applyO
The apply () function is used to apply a function to the margins of an array or matrix. It will
iterate between the elements, apply a function to the data, and return a vector, array or list

if necessary. To use the apply () function, you will need to specify three arguments, X or the
array, MARGIN which margin to apply the function on, and FUN the function.

Below we calculate the row means and column means using the apply function for a 5 x 4
matrix containing the elements 1 through 20:

x <- matrix(1:20, nrow = 5, ncol = 4)

Row Means
apply(x, 1, mean)

[1] 8.5 9.5 10.5 11.5 12.5

Col Means
apply(x, 2, mean)

[1] 3 8 13 18

3.2.2 1lapply O

The lapply() function is used to apply a function to all elements in a vector or list. The
lapply () function will then return a list as the output.

3.2.3 sapply()
The sapply () function is used to apply a function to all elements in a vector or list. Afterwards,

the sapply() will return a “simplified” version of the list format. This could be a vector,
matrix, or array.

02

3.3 Anonymous Functions

Anonymous functions are functions that R temporarily creates to conduct a task. They are
commonly used in the *apply functions, piping or within functions. To create an anonymous
function, we use the function() to create a function .

For example, let x be a vector with the values 1 through 15. Let’s say we want to apply the
function f(z) = 2 + In(x) + e®/z!. We can evaluate the function as the expression in the
function:

" K= i3ill
x"2 + log(x) + exp(x)/factorial(x)

[1] 3.718282 8.387675 13.446202 19.661217 27.846214 38.352077
[7] 51.163496 66.153374 83.219555 102.308655 123.399395 146.485246
[13] 171.565020 198.639071 227.708053

Let’s say we could not do that, we need to evaluate the function for each value of x. We can
use the sapply () function with an anonymous function:

sapply(x, function(x) x"2 + log(x) + exp(x) / factorial(x))
[1] 3.718282 8.387675 13.446202 19.661217 27.846214 38.352077

[7] 51.163496 66.153374 83.219555 102.308655 123.399395 146.485246
[13] 171.565020 198.639071 227.708053

In R 4.1.0, developers introduce a shortcut approach to create functions. You can create a func-
tion using \ () expression, and specify the arguments for your function within the parenthesis.
Reworking the previous code, we can use \ () instead of function():

sapply(x, \(x) x72 + log(x) + exp(x)/factorial(x))

[1] 3.718282 8.387675 13.446202 19.661217 27.846214 38.352077
[7] 51.163496 66.153374 83.219555 102.308655 123.399395 146.485246
[13] 171.565020 198.639071 227.708053

sapply(x, \(.) .72 + log(.) + exp(.)/factorial(.))

[1] 3.718282 8.387675 13.446202 19.661217 27.846214 38.352077
[7] 51.163496 66.153374 83.219555 102.308655 123.399395 146.485246
[13] 171.565020 198.639071 227.708053

Notice that the argument in the anonymous function can be anything.

93

4 Scripting and Piping in R

4.1 Commenting

A comment is used to describe your code within an R Script. To comment your code in R,
you will use the # key, and R will not execute any code after the symbol. The # key can be
used to anywhere in the line, from beginning to midway. It will not execute any code coming
after the #.

Additionally, commenting is a great way to debug long scripts of code or functions. You
comment certain lines to see if any errors are being produced. It can be used to test code line
by line with out having to delete everything.

4.2 Scripting

When writing a script, it is important to follow a basic structure for you to follow your code.
While this structure can be anything, the following sections below has my main recommen-
dations for writing a script. The most important part is the Beginning of the Script
section.

4.2.1 Beginning of the Script

Load any R packages, functions/scripts, and data that you will need for the analysis. I always
like to get the date and time of the

Todays data
analysis_data <- format(Sys.time(),"%Y-%m-%d-%H-%M")

R Packages
library(tidyverse)

library(magrittr)

Functions
source("fxs.R")

o4

Rcpp: :sourceCpp("fxs.cpp")

Data
df1l <- read_csv("file.csv")
df2 <- load("file.RData") %>% get

4.2.2 Middle of the Script

Run the analysis, including pre and post analysis.

Pre Analysis
df1_prep <- Prep_data(df1l)
df2_prep <- Prep_data(df2)

Analysis
df1_analysis <- analyze(dfl_prep)
df2_analysis <- analyze(df2_prep)

Post Analysis

df1_post <- Prep_post(dfl_anlysis)
df2_post <- Prep_post(df2_anlysis)

4.2.3 End of the Script
Save your results in an R Data file:

Save Results
res <- list(df1l

list(pre = dfi_prep,
analysis = dfl_analysis,
post = dfl_post),
list(pre = df2_prep,
analysis = df2_analysis,
post = df2_post))
file_name <- pasteO("results_", analysis_data, ".RData")
save(res, file = file_name)

df2

55

4.3 Pipes

In R, pipes are used to transfer the output from one function to the input of another function.
Piping will then allow you to chain functions to run an analysis. Since R 4.1.0, there are two
version of pipes, the base R pipe and the pipes from the magrittr package. The table below
provides a brief description of each type pipes

Pipe Name Package Description

[> R Pipe Base This pipe will use the output of
the previous function as the
input for the first argument
following function.

%>% Forward Pipe magrittr The forward pipe will use the
output of the previous function
as the input of the following
function.

%35 Exposition Pipe magrittr The exposition function will
expose the named elements of
an R object (or output) to the
following function.

KT>% Tee Pipe magrittr The Tee pipe will evaluate the
next function using the output
of the previous function, but it
will not retain the output of the
next function and utilize the
output of the previous function.

%<>% Assignment Pipe magrittr The assignment pipe will
rewrite the object that is being
piped into the next function.

When choosing between Base or magrittr’s pipes, I recommend using magrittr’s pipes due
to the extended functionality. However, when writing production code or developing an R
package, I recommend using the Base R pipe.

Lastly, when using the pipe, I recommend only stringing a limited amount of functions (~10)
to maintain code readability and conciseness. Any more functions may make the code inco-
herent.

If you plan to use magrittr’s pipe, I recommend loading magrittr package instead of
tidyverse package.

o6

https://magrittr.tidyverse.org/

library(magrittr)

4.3.1 |>

The base pipe will use the output from the first function and use it as the input of the first
argument in the second function. Below, we obtain the mpg variable from mtcars and pipe it
in the mean() function.

mtcars$mpg |> mean()

[1] 20.09062

4.3.2 %>%
4.3.2.1 Uses

Magrittr’s pipe is the equivalent of Base R’s pipe, with some extra functionality. Below we
repeat the same code as before:

mtcars$mpg %>% mean()

[1] 20.09062

Alternatively, we do not have to type the parenthesis in the second function:

mtcars$mpg 7>/, mean

[1] 20.09062

Below is another example where we will pipe the value 3 into the rep() with times=5, this
will repeat the value 3 five times:

3 %>% rep(5)

[1] 33333

o7

If we are interested in piping the output to another argument other than the first argument,
we can use the (.) placeholder in the second function to indicate which argument should take
the previous output. Below, we repeat the vector c(1, 2) three times because the . is in the
second argument:

3 %>% rep(c(1,2), .)
[1] 121212

4.3.2.2 Creating Unary Functions

You can use %>% and . to create unary functions, a function with one argument, can be created.
The following code will create a new function called logsqrt () which evaluates \/log(z):

logsqrt <- . %>} log(base = 10) %>% sqrt
logsqrt (10000)

(1] 2

sqrt(Log10(10000))
[11 2

4.3.3 %$%

The exposition pipe will expose the named elements of an object or output to the following
function. For example, we will pipe the mtcars into the 1m() function. However, we will use
the %$% pipe to access the variables in the data frame for the formula= argument without
having to specify the data= argument:

mtcars %$/ lm(mpg ~ hp)

Call:
lm(formula = mpg ~ hp)

Coefficients:
(Intercept) hp
30.09886 -0.06823

o8

4.3.4 YT>Y%

The Tee pipe will pipe the contents of the previous function into the following function, but
will retain the previous functions output instead of the current function. For example, we use
the Tee pipe to push the results from the 1m() function to print out the summary table, then
use the same 1m() function results to print out the model standard error:

x_1lm <- mtcars %$% lm(mpg ~ hp) %T>%
(\(x) print(summary(x))) %T>%
(\(x) print(sigma(x)))

Call:
Im(formula = mpg ~ hp)

Residuals:
Min 1Q Median 3Q Max
-5.7121 -2.1122 -0.8854 1.5819 8.2360

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 30.09886 1.63392 18.421 < 2e-16 **x
hp -0.06823 0.01012 -6.742 1.79e-07 **x

Signif. codes: O '**xx' (0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.863 on 30 degrees of freedom
Multiple R-squared: 0.6024, Adjusted R-squared: 0.5892
F-statistic: 45.46 on 1 and 30 DF, p-value: 1.788e-07

[1] 3.862962

4.4 Keyboard Shortcuts

Below is a list of recommended keyboard shortcuts:

Shortcut Windows/Linux ~ Mac
%>% Ctrl+Shift+M Cmd+Shift+M
Run Current Line Ctrl+Enter Cmd+Return

Run Current Chunk Ctrl4Shift+Enter Cmd+Shift+Enter

99

Shortcut Windows/Linux ~ Mac

Knit Document Ctrl+Shift+K Cmd+Shift+K
Add Cursor Below Ctrl+Alt+Down Cmd+Alt+Down
Comment Line Ctrl+Shift+C Cmd+Shift+C

I recommend modify these keyboard shortcuts in RStudio

Shortcut Windows/Linux Mac

%in% Ctrl+Shift+1I Cmd-+Shift-+I
%$% Ctrl4+Shift+D Cmd+Shift+D
LT>% Ctrl4+Shift+T Cmd+Shift+T

Note you will need to install the extraInserts package:

remotes::install_github('konradzdeb/extralnserts')

60

5 Further Resources

5.1 R Resources

5.1.1 Programming

Advanced R Efficient Prograaming in R

5.1.2 Reticulate and Python

Reticulate

5.1.3 Rcpp

Repp Website

5.2 Bayesian Programs

5.2.1 JAGS

JAGS rjags

5.2.2 Stan

Stan cmdstanr

5.3 Misc

5.3.1 Missing Semester

This is a great website containing basic information that you may need to know.

61

https://adv-r.hadley.nz/index.html
https://csgillespie.github.io/efficientR/
https://rstudio.github.io/reticulate/
https://www.rcpp.org/
https://mcmc-jags.sourceforge.io/
https://cran.r-project.org/web/packages/rjags/index.html
https://mc-stan.org/
https://mc-stan.org/cmdstanr/
https://missing.csail.mit.edu/

Part |l

Random Variables and Simulations

62

63

6 Random Variables

6.1 Random Experiments
6.2 Probability
6.3 Independence

6.4 Random Variables

6.4.1 Discrete RV

6.4.1.1 Probability Mass Functions
6.4.1.2 Expectation

6.4.1.3 Variance

6.4.1.4 Moment-Generating Functions
6.4.2 Continuous RV

6.4.2.1 Probability Density Functions
6.4.2.2 Expectation

6.4.2.3 Variance

6.4.2.4 Moment-Generating Functions

6.5 Joint Distributions

6.5.1 Joint Probability Density Function
6.5.2 Conditional Density Functions
6.5.3 Marginal Density Functions

6.5.4 Independence and Covariance

6.6 Functions of Random Variablgs

6.6.1 Method of Distribution Functions
6.6.2 Method of Transformations

6.6.3 Method of Moment-Generating Functions

65

7 Models

7.1 Bernoulli Model

7.1.1 Distribution Functions
7.1.2 Expected Value
7.1.3 Variance

7.2 Binomial Model

7.2.1 Distribution Functions
7.2.2 Expected Value

7.2.3 Variance
7.3 Poisson Model

7.3.1 Distribution Functions
7.3.2 Expected Value

7.3.3 Variance
7.4 Negative Binomial Model

7.4.1 Distribution Functions
7.4.2 Expected Value

7.4.3 Variance
7.5 Multinomial Model

7.5.1 Distribution Functions
7.5.2 Expected Value

7.5.3 Variance
7.6 Uniform Model

7.6.1 Distribution Functions

7.6.2 Expected Value

66

8 Random Number Generator

8.1 Random Number Generation

8.2 Computer Random Number Generation

8.2.1 Linear Congruential Generators
8.2.2 Multiple Recursive Generators

8.2.3 Modulo 2 Linear Generators

67

9 Monte Carlo Methods

Monte Carlo Methods are used to determine the

9.1 Probability Inverse Transformation
9.2 Composition Method

9.3 Acceptance-Rejection Method

9.4 Box-Muller Methods

68

10 Markov Chain Monte Carlo Methods

69

Part 11l

Randomizations

70

11 Permutation Tests

71

12 Permutation Regression

72

Part IV

Monte Carlo Methods

73

13 Monte Carlo Integration

74

14 Monte Carlo Hypothesis Testing

75

15 Monte Carlo Optimization

76

16 Monte Carlo Methods Case Study 1

7

17 Monte Carlo Methods Case Study 2

78

18 Monte Carlo Methods Case Study 3

79

Part V

Bootstrapping

80

19 Parametric Bootrapping

81

20 Nonparametric Boostrapping

82

Part VI

Data Manipulation, Summarization,
and Graphics

83

Resources

How to read this section.

Through out this Section, we use certain notations for different components in R. To begin,
when something is in a gray block, _, this indicates that R code is being used. When I am
talking about an R Object, it will be displayed as a word. For example, we will be using
the R object mtcars. When I am talking about an R function, it will be displayed as a
word followed by an open and close parentheses. For example, we will use the mean function
denoted as mean() (read this as “mean function”). When I am talking about an R argument
for a function, it will be displayed as a word following by an equal sign. For example, we
will use the data argument denoted as data= (read this as “data argument”). When I am
referencing an R package, I will use :: (two colons) after the name. For example, in this
Section, I will use the ggplot2:: (read this as “ggplot2 package”) Lastly, if I am displaying
R code for your reference or to run, it will be displayed on its own line. There are many
components in R, and my hope is that this will help you understand what components am I
talking about.

84

21 Importing Data

21.1 Directories

21.2 Importing Data

Reading Data —-—---

RData ———-—
load("~/x.RData")

CSV ———-

library(readr)

data_3_1 csv <- read_csv("student/stat_147/data/data_3_1.csv")
View(data_3_1_csv)

Excel —--—-

library(readxl)

data_3_1 <- read_excel("student/stat_147/data/data_3_1.x1lsx")
View(data_3_1)

tet -——-

library(readr)

data_3_1_s <- read_table2("student/stat_147/data/data_3_1_s.txt")
View(data_3_1_s)

Semi-colon —----—

library(readr)

data_3_1_sc <- read_delim("student/stat_147/data/data_3_1_sc.txt", ";", escape_double = FALS
View(data_3_1_sc)

SPSS —-—-

library(haven)

data_3_1 <- read_sav("student/stat_147/data/data_3_1.sav")

View(data_3 1)

85

SAS ————-

library(haven)

data_3 1 <- read_sas("student/stat_147/data/data_3_1.sas7bdat", NULL)
View(data_3_1)

Stata --———
library(haven)
data_3_1 <- read_dta("student/stat_147/data/data_3_1.dta")
View(data_3_1)

data_3_1 <- read.csv("~/student/stat_147/data/data_3_1.csv", header=FALSE)
View(data_3_ 1)

Reading Data --—-—--

setwd("~/Repos/s147/files/Week_2")

Base R ————-

CSV
data.csv <- read.csv("data.csv")

STATA File
library(foreign)
read.dta("data.dta")

RStudio packages
library(readr)

read_csv("data.csv")

library(readxl)
read_excel("data.xlsx")

library(haven)
read_dta("data.dta")

86

22 Data Manipulation

Data manipulation consists of transforming a data set to be analyzed. Certain statistical
methods require data sets to be formatted in a certain way before you can apply a certain
function!. Other times, you will need to transform the data set to present to stakeholder.

Therefore, being able to transform a data set is essential.

! Warnings Suppressed

In order to keep the page concise, the warning messages have been suppressed. These
warnings were produced because functions were applied to incorrect inputs, ie v/A. There-
fore, you may see NA as the output. There is nothing wrong with the code, it is just that
the input was not valid, but R still completed the task.

22.1 Tidyverse

Tidyverse is a set of packages that make data manipulation much easier. These are functions
that many individuals from the R community find useful to use for data analysis. In my opinion,
once you have understand how Tidyverse packages function, it makes it much easier to work
with than Base R. Many of the functions are descriptively named for easy remembrance. For
the most part, you can do almost everything that Base R can do. There are just a few things
you can’t do, but it is rare that you will use them. One last thing is that the output from
tidyverse is always formatted as a tibble class, the Tidyverse version of the data frame. This
can have some ups and downs. However, think of a tibble as a lazier data frame. If you haven’t
done so, install tidyverse:

install.packages("tidyverse")

Then load tidyverse into R:

library(tidyverse)

This will load the main Tidyverse packages: ggplot2, tibble, tidyr, readr, purr, dplyr,
stringr, and forcats.

Linear Mixed-Effects Models.

87

22.2 Loading Data

There are three methods to load a data set in R: using base R, using Tidyverse, or using
RStudio. While it is important to understand how the code works to load a data set, I
recommend using RStudio to import the data. It does all the work for you. Additionally, if
you decide to use Tidyverse packages, RStudio will provide corresponding code for a particular
file.

To import a data set using RStudio, head over to the environment tab (usually in the upper
right hand pane) and click on the Import Dataset button. A pop-up window should look
something like below.

Environment History Connections Build Git Tutorial

@ | & Import Dataset -

i Globi From Text

Environment is emp

From Stata...

Notice how there are several options to load a data set. Depending on the format, you may
want to choose one of those options. Next, notice how there are 2 “From Text”. This is because
it will load text data using either Base R packages or the readr package from tidyverse. Either
works, but the readr package provides the necessary code to load the data set in the window.
The other one provides the code in the console.

22.2.1 CSV Files

A CSV file is a type of text file that where the values are separated from commas. It is very
common file that you will work with. Here I will provide the code necessary to import a CSV
file using either Base R or readr package code.

22.2.1.1 Base R

read.csv("FILE_NAME_AND_LOCATION")

88

22.2.1.2 readr package

read_csv("FILE_NAME_AND LOCATION")

Notice that the functions are virtually the same.

22.2.2 For This Chapter

You will need to download and extract this zip file to conduct the analysis in the chapter. The
code below will load the data sets you need:

datal
data?2
data3
datad
datab
data6
data7

<- read_csv("data/data_3_1.
<- read_csv("data/data_3_2.
<- read_csv("data/data_3_3.
<- read_csv("data/data_3_6.
<- read_csv("data/data_3_7.
<- read_csv("data/data_3_5.
<- read_csv("data/data_3 4.

csv")
csv")
csv")
csv")
csv")
csv")
csv")

Make sure to change the file location as needed.

22.3 The Pipe Operator |>

The main benefit of the pipe operator is to make the code easier to read. The base pipe |>
was added in R 4.0. What the pipe operator, |>, does is that it will take the output from a
previous function and it will use it as the input for the next function. This prevents us from
nesting functions together and overwhelm us with numerous parentheses and commas. To

practice, pipe data into the glimpse().

datal |> glimpse()

Rows:
Column
ID1
catl
cat2
varl

S P P BH S

var2

1,000
s: 10
<chr>
<chr>
<chr>
<dbl>
<dbl>

"A2b6115fd", "AcblcO9cfl",

IIAH, llAll’ IIAll’
IIE", ||Dll’ IIFH,

n n
A",

nEn
F",

llCll s
||Ell’

"A7534d3a0", "A73fc5642", "Ae020e4bd", ~

"All s
IIDH,

n n
A",

nEn
E",

1.1541672, -0.3667030, -0.4203357,
4, 3’ 6a 5, 33 4, 5’ Oa 5, 33 3, 8, 4, 5, 2: 5: 7, 7, 5, 1, 4’ 33~

89

IlCII, IIBll’ IIC"’ IIBII’ IIBIl’ IIAII’ ~
llFll’ IIEll, IIEII’ llFll’ IIEll, IIEII’ ~
-2.0006336, 0.6970417, 0.46690~

https://www.inqs.info/stat_comp/files/data.zip

var3 <dbl> 2.87981553, 0.06397162, -1.04021753, -0.31355281, 0.52613439, 2.4~
vard <dbl> 3.53845785, 1.07279559, 0.22632480, 0.02128418, 2.97936180, 1.853~
varb <dbl> -3.1827969, -3.1827969, -3.1827969, -3.1827969, 6.0601967, -3.182~
var6 <db1> o, o, o, o, o, o0, o, o0, 0, 0, 0, 0, O, O, O, O, O, O, O, O, O, O,~
var7 <db1> 1, o0, 0, 0, 0, 0, 1, 1, O, 1, O, 1, O, 1, 1, O, 1, O, 1, O, 1, 1,~

$F P S PH S

The glimpse () provides basic variable information about datal. I recommend practice read-
ing the code in plain English to help you understand how these functions.

22.4 Data Transformation

This section focuses on manipulating the data to obtain basic statistics, such as obtaining the
mean for different categories. Many of the functions used here are from the dplyr package.

22.4.1 Summarizing Data

Summarizing Data is one of the most important thing in statistics. First, let’s get the mean
for all the variables in datal. This is done by using the summarize_all(). All you need to
do is provide the function you want R to provide. Pipe datal into the summarize_all() and

specify mean in the function.

datal |> summarise_all(mean)

A tibble: 1 x 10

ID1 catl cat2 varl var2 var3 var4 varb var6 var7
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA NA NA -0.0335 4.94 0.936 1.96 0.774 0 0.394

Notice how some values are NA, this is because the variables are character data types. Therefore,
it will not be able to compute the mean. Now find the standard deviation for the data set.

datal |> summarise_all(sd)

A tibble: 1 x 10
ID1 catl cat2 varl var2 var3 var4d varb var6 var7
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 NA NA NA 1.00 2.22 1.02 1.00 3.93 0 0.489

90

Now lets create a frequency table for the cat1 variable in datal. use the count () and specify
the variable you are interested in:

datal |> count(catl)

A tibble: 3 x 2

catl n
<chr> <int>
1A 332
2 B 328
3C 340

Now, repeat for cat2 in datal:

datal |> count(cat?2)

A tibble: 3 x 2

cat2 n
<chr> <int>
1D 322
2 E 337
3 F 341

22.4.2 Grouping

Summarizing data is great, but sometimes you may want to group data and obtain summary
statistics for those groups. This is done by using the group_by() and specify which variable
you want to group. Try grouping datal by catl:

datal |> group_by(catl)

A tibble: 1,000 x 10
Groups: catl [3]

ID1 catl cat2 varl var?2 var3d varéd varb var6 var7

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A2b6115fd A E 1.15 4 2.88 3.54 -3.18 0 1
2 Acb1c9cfl A D -0.367 3 0.0640 1.07 -3.18 0 0
3 A7534d3a0 A F -0.420 6 -1.04 0.226 -3.18 0 0
4 A73fcb642 A F -2.00 5 -0.314 0.0213 -3.18 0 0
5 Ae020e4bd C E 0.697 3 0.526 2.98 6.06 0 0

91

6 Ac0d3bOfe A D 0.467 4 2.45 1.85 -3.18 0 0
7 A2edfed41 A E 1.36 5 0.514 0.529 -3.18 0 1
8 Ad38adbbe C F 0.369 0 1.98 2.36 6.06 0 1
9 AbeeOf97f B E 1.80 5 0.147 2.22 -0.701 0 0
10 Ad791c03d C E 1.25 3 -1.06 0.0289 6.06 0 1

i 990 more rows

Great! You now have grouped data; however, this is not helpful. We can use this output and
summarize the groups. All we need to do is pipe the output to the summarise_all(). Group
datal by catl and find the mean:

datal |> group_by(catl) |> summarise_all(mean)

A tibble: 3 x 10

catl ID1 cat2 varl var2 var3d var4d varb var6 var7
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1A NA NA -0.0369 4.79 0.877 1.97 -3.18 0 0.401
2B NA NA -0.0345 4.98 1.01 1.97 -0.701 0 0.390
3C NA NA -0.0292 5.05 0.922 1.94 6.06 0 0.391

If we want to group by two variables, all we need to do is specify both variables in the
group_by (). Group datal by catl and cat2 then find the mean:

datal |> group_by(catl,cat2) |> summarise_all(mean)

A tibble: 9 x 10
Groups: catl [3]

catl cat2 ID1 varl var2 var3d var4d var5 var6 var7

<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1A D NA -0.0186 4.87 0.8568 1.93 -3.18 0 0.374
2 A E NA -0.0265 4.70 0.882 1.94 -3.18 0 0.393
3 A F NA -0.0661 4.79 0.890 2.03 -3.18 0 0.436
4 B D NA -0.152 5.21 1.01 1.96 -0.701 0 0.333
5B E NA 0.0890 5.04 1.04 1.94 -0.701 0 0.417
6 B F NA -0.0659 4.72 0.979 2.03 -0.701 0 0.411
7 C D NA -0.160 5.01 0.927 1.87 6.06 0 0.378
8 C E NA -0.000228 5.07 0.910 2.00 6.06 0 0.345
9C F NA 0.0662 5.07 0.930 1.94 6.06 0 0.445

92

Now, instead of finding the mean for all variables in a data set, we are only interested in
viewing varl. We can use the summarise () and type the R code for finding the mean for the
particular variable. Group datal by cat1l and find the mean for vari:

datal |> group_by(catl) |> summarise(mean(varl))

A tibble: 3 x 2
catl “mean(varl)’

<chr> <dbl>
1A -0.0369
2 B -0.0345
3C -0.0292

22.4.3 Subsets

On occasion, you may need to create a subset of your data. You may only want to work with
one part of your data. To create a subset of your data, use the filter () to create the subset.
This will select the rows that satisfy a certain condition. Create a subset of datal where only
the positive values of varl are present. Use the filter () and state var1>0.

datal |> filter(var1>0)

A tibble: 484 x 10

ID1 catl cat2 varl var2 var3 vard varb5 var6 var7

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A2b6115fd A E 1.15 4 2.88 3.54 -3.18 0 1
2 Ae020e4bd C E 0.697 3 0.526 2.98 6.06 0 0
3 Ac0d3b0fe A D 0.467 4 2.45 1.85 -3.18 0 0
4 A2edfed4l A E 1.36 5 0.514 0.529 -3.18 0 1
5 Ad38a4bbe C F 0.369 0 1.98 2.36 6.06 0 1
6 A5eeO0f97f B E 1.80 5 0.147 2.22 -0.701 0 0
7 Ad791c03d C E 1.256 3 -1.05 0.0289 6.06 0 1
8 Af88d3ab5 B E 2.10 8 3.07 3.29 -0.701 0 1
9 A429b65a6 A E 1.46 4 0.0638 2.36 -3.18 0 0
10 A3638155a A F 0.429 5 1.76 1.55 -3.18 0 1

i 474 more

H
o
=
n

If you know which rows you want, you can use the slice() and specify the rows as a vector.
Create a subset of datal and select the rows 100 to 200 and 300 to 400.

93

datal |> slice(c(100:200, 300:400))

A tibble: 202 x 10

ID1 catl cat2 varl var?2 var3 vard varb5 var6 var7

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 A568e9a48 A E 1.88 6 2.59 4.02 -3.18 0 1
2 Aa77dca83 B D 1.32 5 0.889 3.12 -0.701 0 1
3 A901d56c2 C F -0.406 6 0.496 3.67 6.06 0 0
4 Ad66cebl13 A D 1.04 2 0.331 0.00523 -3.18 0 0
5 A897a230d B E -0.616 9 1.61 3.08 -0.701 0 0
6 Afbc693a4 B F -0.404 7 -0.604 0.149 -0.701 0 1
7 AeT7269323 C F -0.176 4 1.06 2.26 6.06 0 0
8 A182729af A D 1.11 7 -0.297 1.45 -3.18 0 1
9 A1a06950b C E -1.29 5 1.78 3.07 6.06 0 1
10 A569c9ds81 A F 1.28 6 0.683 1.53 -3.18 0 0

i 192 more rows

If you need random sample of your datal, use the slice_sample(n = N) and specify the
number you want. It will create a data set of randomly selected rows. Create a random
sample of datal of 100 rows

datal |> slice_sample(n = 100)

A tibble: 100 x 10

ID1 catl cat2 varl var?2 var3 varéd varb5 var6 var7

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Dd7d5d256 C F -0.430 3 3.09 2.50 6.06 0 0
2 D3638155a B E 1.15 5 0.262 2.23 -0.701 0 1
3 D59e7d00c A F -1.20 6 1.95 2.21 -3.18 0 1
4 A891c4eb2 B F -0.648 7 0.670 2.01 -0.701 0 0
5 Acd6eeb46 A D -0.886 11 0.261 0.442 -3.18 0 1
6 Bd791c03d B E -1.45 4 1.64 1.72 -0.701 0 0
7 C87ab811d A E 1.74 3 1.24 3.16 -3.18 0 1
8 Dc0d3b0Ofe B F 0.629 4 -0.870 -0.631 -0.701 0 1
9 C8882c792 A D 0.485 1 0.380 1.92 -3.18 0 0
10 A7£2fb689 B F 0.877 5 1.28 0.841 -0.701 0 1

i 90 more rows

If you want a random sample that is proportion of your original data size, use the
slice_sample(prop = X). Specify the proportion that you want from the data. Create a
random sample of datal that is only 2/7th of the original size.

94

datal |> slice_sample(prop = 2/7)

A tibble: 285 x 10

ID1 catl cat2 varl var2 var3d var4 varb var6 var7

<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 C£0e93509 A D -0.184 7 1.68 2.41 -3.18 0 1
2 D895472ca B D -1.38 7 0.710 1.36 -0.701 0 0
3 A8e80383c A F -1.77 4 0.489 1.73 -3.18 0 0
4 (22669227 C F -2.00 4 0.776 0.863 6.06 0 0
5 C897a230d A F -0.372 2 0.150 1.45 -3.18 0 1
6 Acbe3a2f3 B D -0.770 6 -0.415 0.173 -0.701 0 0
7 Cea7d3e3a C D 0.244 7 2.43 3.55 6.06 0 0
8 B732beela B E 0.397 3 -0.0451 1.78 -0.701 0 0]
9 B30c73efd C D -0.409 5 0.971 1.52 6.06 0 0
10 Dcd9588fc C E -2.22 3 2.28 2.27 6.06 0 0

i 275 more rows

22.4.4 Creating Variables

Some times you may need to transform variables to a new variable. This can be done by
using the mutate() where you specify the name of the new variable and set equal to the
transformation of other variables. Using the data2 data set, create a new variable called
logvarl and set that to the log of val.

data2 |> mutate(logvarl = log(val))

A tibble: 1,000 x 6

ID1 ID_1 ID_2 val va2 logvarl
<chr> <chr> <chr> <dbl> <dbl> <dbl>
A2b6115fd 2b6115fd .458 81.4 -0.782
Ac51c9cfl cb1c9cfl .236 -1.15 -1.44

A7534d3a0 7534d3a0 .254 1.16 -1.37

A73fcb5642 73fcb642 .0411 -1.21 -3.19

Ae020e4bd e020e4bd .266 -2.31 -1.32

Ac0d3b0fe c0d3bOfe .00992 -0.882 -4.61

A2edfed41 2edfed4l .293 -0.375 -1.23

Ad38a4dbbe d38a4dbbe .261 -1.09 -1.34

A5ee0f97f 5ee0f97f .186 -6.14 -1.68

10 Ad791c03d d791c03d .0368 -0.2568 -3.30

i 990 more rows

© 00 NO Ok WN -
i R
O O O O O O O O O o

95

The mutate() allows you to create multiple new variables at once. Id addition to logvari,
create a new variable called sqrtvar2 and set that equal to the square root of va2.

data2 |> mutate(logvarl = log(val),
sqrtvar2 = sqrt(va2))

A tibble: 1,000 x 7

ID1 ID_1 ID_2 val va2 logvarl sqrtvar2
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
A2b6115fd 2b6115fd .458 81.4 -0.782 9.02
Acb51c9cfl cblc9cfl .236 -1.15 -1.44 NaN

A7534d3a0 7534d3a0 .254 1.16 -1.37 1.08

A73fc5642 73fc5642
Ae020e4bd e020e4bd
Ac0d3b0fe c0d3bOfe
A2edfed4l 2edfed4l
Ad38a4dbbe d38a4dbbe
A5ee0f97f b5eeOf97f
10 Ad791c03d d791c03d
i 990 more rows

.0411 -1.21 -3.19 NaN
.266 -2.31 -1.32 NaN
.00992 -0.882 -4.61 NaN
.293 -0.375 -1.23 NaN
.261 -1.09 -1.34 NaN
.186 -6.14 -1.68 NaN
.0368 -0.2568 -3.30 NaN

© 00 NO O W N -
i
O O O O O O O o oo

If you want to create categorical variables, use the mutate() and the if_else(). The
if_else() requires three arguments: condition argument, true argument, and false ar-
gument. The first argument requires a condition that will return a logical value. If true, then
R will assign what is stated in the true argument, otherwise R will assign what is in the false
argument. To begin, find the median of val from data2 and assign it to medval.

medval <- data2$val |> median()

No create a new variable called dival where if val is greater than the median of val, assign
it “A”, otherwise assign it “B”.

data2 |> mutate(dival=if else(val>medval,"A","B"))

A tibble: 1,000 x 6

ID1 ID_1 ID_2 val va2 dival
<chr> <chr> <chr> <dbl> <dbl> <chr>
1 A2b6115fd 2b6115fd A 0.458 81.4 A
2 Acb51c9cfl cb1c9cfl A 0.236 -1.15 B
3 A7534d3a0 7534d3a0 A 0.254 1.16 B
4 A73fch642 73fcb642 A 0.0411 -1.21 B

96

© 00 N O O

10

Ae020e4bd
Ac0d3b0fe
A2edfed4l
Ad38a4dbbe
AS5eeQf97f
Ad791c03d
i 990 more

e020e4bd
c0d3b0fe
2edfed4l
d38a4bbe
5ee0f97f
d791c03d
rows

- A

22.4.5 Merging Datasets

O O O O O o

.266 -2.31
.00992 -0.882
.293 -0.375
.261 -1.09
.186 -6.14
.0368 -0.258

0w w>=ww

One of the last thing is to go over how to merge data sets together. To merge the data sets,
we use the full_join(). The full_join() needs two data sets (separated by commas) and
the by argument which provides the variables needed (must be the same name for each data

set) to merge the data sets. Merge datal and data2 with the variable ID1.

full_join(datal, data2, by = "ID1")

A tibble:

©O© 0 NO O W N -

-
o

ID1
<chr>
A2b61~
Acblc~
A7534~
A73fc~
Ae020~
Ac0d3~
A2edf~
Ad38a~
AbSeeO~
Ad791~

cat2

<chr> <chr>

A
A
A
A
C
A
A
C
B

C

E

[B > B B o B o > B e B W

i 990 more rows
i 2 more variables: val <dbl>, va2 <dbl>

1,000 x 14
catl

varil

var2

<dbl> <dbl>

1.
.367
.420
.00
.697
.467
.36
.369
.80
.25

15

W o1 O U1 WU o Wb

[
O L ON OO -, ON

|
[

var3
<dbl>
.88
.0640
.04
.314
.526
.45
.514
.98
.147
.05

ONNOEFL NOO LW

vard

<dbl>

.54 -3.
.07 -3.
.226 -3.
.0213 -3.
.98 6.
.85 -3.
.529 -3.
.36 6.
.22 -0.
.0289 6.

18
18
18
18
06
18
18
06
701
06

0

O O OO O O o oo

var5 var6 var7
<dbl> <dbl> <dbl>

= O Rk, P, OO OO O =

ID_1

<chr>
2b61~
cblc~
7534~
73fc~
€020~
c0d3~
2edf~
d38a~
5ee0~
d791~

The full_join() allows you to merge data sets using two variables instead of one. All you
need to do is specify by argument with a vector specifying the arguments. Merge data2 and

data3 by ID_1 and ID_2.

full_join(data2, data3, by = c("ID_1","ID_2"))

97

A tibble:

© 00 NO Ok WN -

10

ID1.x

<chr>

A2b6115£fd
Ac51c9cfl
A7534d3a0
A73fcb642
Ae020e4bd
Ac0d3b0fe
A2edfed4l
Ad38a4dbbe
A5ee0f97f
Ad791c03d

i 990 more

1,000 x 8
ID_1
<chr>
2b6115fd
cb1lc9cfl
7534d3a0
73fcb642
e020e4bd
c0d3b0fe
2edfed4l
d38a4dbbe
5ee0f97f
d791c03d
rows

ID_2
<chr>

g -

22.5 Reshaping Data

O O O O O OO O o o

val

<db

.458
.236
.254
.041
.266
.009
.293
.261
.186
.0368

1>

1

92

<

va2
dbl>
.4
.15
.16
.21
.31
.882
.375
.09
.14
.258

ID1.y

<chr>

A2b6115fd
Acb1c9cfl
A7534d3a0
A73fcb5642
Ae020e4bd
Ac0d3b0fe
A2edfed41
Ad38a4dbbe
Abee0f97f
Ad791c03d

O O OO+ OOk OO

vl
<dbl>
.361
.273
.17
.879
.0268
.18
.356
.430
.643
.183

O O O O WO o oN o

v2
<dbl>
.278
.64
.119
.705
.297
.16
.174
.130
.0231
.311

This section focuses on reshaping the data to prepare it for analysis. For example, to conduct
longitudinal data analysis, you will need to have long data. Reshaping data may be with
converting data from wide to long, converting back from long to wide, splitting variables,

splitting rows and merging variable.

package

22.5.1 Wide to Long Data

The functions used in this lesson are from the tidy

Converting data from wide to long is necessary when the data looks like data4, view data4:

datad

A tibble:

O NO Ok WN -

ID1

<chr>
Ad9131ee9
A9c5988ea
A28a5479d
Aafb537cc
A370958bd
Aea997e13
A3563646f
A9b3cfdba

1,000 x 5
X1
<dbl>
.800
1.17
1.85
1.55
.36
.37
.10

-0.513

X2 X3
<dbl> <dbl>
4.68 1.46
1.50 4.83
2.64 2.39
2.28 3.35
2.48 2.06
3.27 3.11
0.902 2.49
0.271 2.97

X4

<dbl>

NN WP Wb W

.35
.75
.34
.76
.70
.31
.75
.97

98

9 A32b6737a 1.28 2.02 3.48 4.87
10 A30e96748 1.30 1.72 2.11 2.04
i 990 more rows

Let’s say data4 represents biomarker data. Variable ID1 represents a unique identifier for the
participant. Then X1, X2, X3, and X4 represents a value collected for a participant at different
time point. This is know as repeated measurements. This data is considered wide because the
repeated measurements are on the same row. To make it long, the repeated measurements
must be on the same column.

To convert data from long to wide, we will use the pivot_longer () with the first argument
taking variables of the repeated measurements, c(X1:X4) or X1:X4, second you will need to
specify the names_to argument which specifies the variable name to store the long variables,
lastly you will need to specify the values_to argument that specifies variable to store the
values in the long data set. Convert the data4 to long and name the variable names column
"measurement", and values column "value".

data4 |> pivot_longer(X1:X4,

names_to = "measurement",
values_to = "value")
A tibble: 4,000 x 3
ID1 measurement value
<chr> <chr> <dbl>
1 Ad9131ee9 X1 0.800
2 Ad9131ee9 X2 4.68
3 Ad9131ee9 X3 1.46
4 Ad9131ee9 X4 5.35
5 A9cb5988ea X1 1.17
6 A9c5988ea X2 1.50
7 A9cb988ea X3 4.83
8 A9c5988ea X4 3.75
9 A28ab479d X1 1.85
10 A28ab479d X2 2.64

i 3,990 more rows

22.5.2 Long to Wide

If you need to convert data from long to wide, use the pivot_wider(). You will need to
specify the names_from argument which specifies the variable names for the wide data set,
and you will need to specify the values_from argument that specifies variable that contains

99

the values in the long data set. Convert datab from long to wide data. Note, you must specify
the arguments for this function.

datab |> pivot_wider(names_from = measurement,
values_from = value)

A tibble: 1,000 x 5

ID1 X1 X2 X3 X4
<chr> <dbl> <dbl> <dbl> <dbl>
1 Ad9131ee9 0.800 4.68 1.46 5.35
2 A9cb988ea 1.17 1.50 4.83 3.75
3 A28ab479d 1.85 2.64 2.39 4.34
4 Aafbb37cc 1.55 2.28 3.35b 3.76
5 A370958bd -1.36 2.48 2.06 4.70
6 Aea997e13 2.37 3.27 3.11 3.31
7 A3563646f 2.10 -0.902 2.49 2.75
8 A9b3cfdba -0.513 0.271 2.97 2.97
9 A32b6737a 1.28 2.02 3.48 4.87
10 A30e96748 1.30 1.72 2.11 2.04
i 990 more rows
22.5.3 Spliting Variables
Before we begin, look at data6:
data6
A tibble: 1,000 x 4
ID1 merge X3 X4
<chr> <chr> <dbl> <dbl>
1 Ad9131ee9 -1.23/2.64 2.12 3.56
2 A9cb988ea 1.74/3.02 4.09 4.88
3 A28ab479d 0.87/3.56 3.47 4.47
4 Aafbb537cc 1.05/2.01 3.61 5.03
5 A370958bd -1.47/1.26 3.98 6.59
6 Aea997e13 1.66/3.51 1.656 2.72
7 A3563646f 1.81/1.7 4.29 3.13
8 A9b3cfdba 1.8/2.26 1.94 5.23
9 A32b6737a 2.38/1.68 3.06 3.3
10 A30e96748 1/2.17 2.59 3.03

i 990 more rows

100

Notice how the merge variable has two values separated by “/”. If we need to split the variable
into two variables, we need to specify the separate(). All you need to specify is the variable
you need to split, the name of the 2 new variables, in a character vector, and how to split the
variable "/". Split the variable merge in data6 to two new variables called X1 and X2.

data6 |> separate(merge, c("X1", "X2"), "/")

A tibble: 1,000 x 5

ID1 X1 X2 X3 X4

<chr> <chr> <chr> <dbl> <dbl>
1 Ad9131ee9 -1.23 2.64 2.12 3.56
2 A9cb988ea 1.74 3.02 4.09 4.88
3 A28ab479d 0.87 3.56 3.47 4.47
4 Aafb537cc 1.05 2.01 3.61 5.03
5 A370958bd -1.47 1.26 3.98 6.59
6 Aea997el13 1.66 3.51 1.65 2.72
7 A3563646f 1.81 1.7 4.29 3.13
8 A9b3cfdba 1.8 2.26 1.94 5.23
9 A32b6737a 2.38 1.68 3.06 3.3
10 A30e96748 1 2.17 2.59 3.03

i 990 more rows

22.5.4 Splitting Rows

The variable merge in data6 was split into different variables before, now instead of variables,
let’s split it into different rows instead. To do this, use the separate_rows(). All you need to
specify the variable name and the sep argument (must state the argument). Split the merge
variable from data6 into different rows.

data6 |> separate_rows(merge, sep = "/")

A tibble: 2,000 x 4

ID1 merge X3 X4

<chr> <chr> <dbl> <dbl>
1 Ad9131ee9 -1.23 2.12 3.56
2 Ad9131ee9 2.64 2.12 3.56
3 A9cb988ea 1.74 4.09 4.88
4 A9cb5988ea 3.02 4.09 4.88
5 A28ab479d 0.87 3.47 4.47
6 A28a5479d 3.56 3.47 4.47
7 Aafbb37cc 1.05 3.61 5.03

101

8 Aafbb37cc 2.01 3.61 5.03
9 A370958bd -1.47 3.98 6.59
10 A370958bd 1.26 3.98 6.59
i 1,990 more rows

22.5.5 Merging Rows

If you need to merge variables together, similar to the merge variable, use the unite(). All
you need to do is specify the variables to merge, the col argument which specifies the name
of the new variable (as a character), and the sep argument which indicates the symbol for
separate value, as a character. Note, you need to specify the bot the col argument and sep
argument. Merge variable X3 and X4 in data6 to a new variable called merge2 and have the
separator be a hyphen.

data6 |> unite(X3, X4, col = "merge2", sep="-")

A tibble: 1,000 x 3

ID1 merge merge?2
<chr> <chr> <chr>
Ad9131ee9 -1.23/2.64 2.12-3.56
A9c5988ea 1.74/3.02 4.09-4.88
A28a5479d 0.87/3.56 3.47-4.47
Aaf5537cc 1.05/2.01 3.61-5.03
A370958bd -1.47/1.26 3.98-6.59
Aea997e13 1.66/3.51 1.65-2.72
A3563646f 1.81/1.7 4.29-3.13
A9b3cfdba 1.8/2.26 1.94-5.23
A32b6737a 2.38/1.68 3.06-3.3
10 A30e96748 1/2.17 2.59-3.03
i 990 more rows

© 00 NO Ok WN -

22.6 Applied Example

Here is an applied example where you will use what you learned from the previous lesson and
convert data7 into data8. data7 has a wide data format which contains time points labeled as
vX, where X represents the time point number. At each time point, the mean, sd, and median
was taken. You will need to convert the data to long where each row represents a new time
point, and each row will have 3 variables representing the mean, sd, and median. View both
data7 and data8 to have a better idea on what is going on. Remember you need to convert
data7 to datas8.

102

data’7

A tibble: 1,000 x 13
ID1 “vl/mean “vi/
<chr> <dbl> <d

1 Ad9131~ 3.11 2
2 A9ch98~ 2.03 2
3 A28ab4~ -0.415 2
4 Aafbb3~ 1.25 2
5 A37095~ -0.984 0
6 Aea997~ 1.42 1
7 A35636~ -0.149 3
8 A9b3cf~ 0.270 1
9 A32b67~ 0.714 3

10 A30e96~ 0.467 2

i 990 more rows

i 5 more variables:

#

“v4/sd” <dbl>,

data8

A tibble: 4,000 x 5

© 0 NO Ok WN -

10

ID1

<chr>
Ad9131ee9
Ad9131ee9
Ad9131ee9
Ad9131ee9
A9c5988ea
A9c5988ea
A9cH988ea
A9cb5988ea
A28a5479d
A28a5479d

time

<chr>

vl
v2
v3
v4
vl
v2
v3
vad
vl
v2

o

i 3,990 more rows

“v3/sd” <dbl>,
“v4/median” <dbl>

mean

<dbl>

O, ONONF W

N

.11
.93
.65
.605
.03
.709
.45
.710
.415
.38

sd”
bl>

.86
.90
.42
.24
.972
.34
.26
.57
.39
.47

“vl/median”

sd

<dbl>

.86
.21
.383
.883
.90
.27
.01
.03
.42
.820

<db
4.

N O wdHENWWNDDN

1>
50

.08
.47
.71
.73
.35
.49
.25
.66
.64

median

N >N DWW

N O

<db
.50
.27
.23
.65
.08
.13
.84
.08
.47
.22

1>

98

“v2/mean”
<dbl>

WNNOONNSEDNO -

.93
.709
.38
.00
.19
77
.07
.89
.52
.97

“v2/sd”
<dbl>

3.
.27
.820
.456
.184
.16
.44
.422
.15
.76

“v3/median <dbl>,

21

“v2/median”

|
O N b - bW

> W o w

<dbl>

.27
.13
.22
.32
.14
.00874
.85
.01
.16
.00

“v3/mean”

“v4/mean” <dbl>,

<dbl>
.65
.45
.44
.54
.32
.02
.0388
.218
.784
.21

Now that you viewed the data set, type the code to convert data7 to data8. Try working it
out before you look at the solution.

103

data7 |> pivot_longer(vl/mean’: v4/median”,
names_to = "measurement",

A tibble: 4,000 x 5

ID1

<chr>
Ad9131ee9
Ad9131ee9
Ad9131ee9
Ad9131ee9
A9c5988ea
A9c5988ea
A9c5988ea
A9cb988ea
A28a5479d
10 A28ab5479d

© 00 NO Ok WN -

i 3,990 more rows

time
<chr>

vl
v2
v3
vad
vl
v2
v3
va
vl
v2

values_to = "value") |[>
separate(measurement, c("time","stat"), sep="/") [>
pivot_wider(names_from

mean

<dbl>

O, ONONF W

|
N O

.11
.93
.65
.605
.03
.709
.45
.710
.415
.38

sd

<dbl>

.86
.21
.383
.883
.90
.27
.01
.03
.42
.820

m

N &N DWW

N

stat, values from = value)

edian
<dbl>
.50
.27
.23
.65
.08
.13
.84
.0898
AT
.22

104

23 Data Summarization

23.1 Descriptive Statistics

Here, we will go over some of the basic syntax to obtain basic statistics. We will use the
variables mpg and cyl from the mtcars data set. To view the data set use the head():

head (mtcars)

mpg cyl disp hp drat wt gsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 O 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 O 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 O 3 1

The variable mpg would be used as a continuous variable, and the variable cyl would be used
as a categorical variable.

23.1.1 Point Estimates

The first basic statistic you can compute are point estimates. These are your means, medians,
etc. Here we will calculate these estimates.

23.1.1.1 Mean

To obtain the mean, use the mean (), you only need to specify x= for the data to compute the
mean:

mean (mtcars$mpg)

[1] 20.09062

105

23.1.1.2 Median

To obtain the median, use the median(), you only need to specify x= for the data to compute
the median:

median (mtcars$mpg)

[1] 19.2

23.1.1.3 Frequency

To obtain a frequency table, use the table(), you only need to specify the data as the first
argument to compute the frequency table:

table(mtcars$cyl)
4 6 8
11 7 14

23.1.1.4 Proportion

To obtain a the proportions for the frequency table, use the prop.table(). However the first
argument must be the results from the table(). Use the table() inside the prop.table()
to get the proportions:

prop.table(table(mtcars$cyl))

4 6 8
0.34375 0.21875 0.43750

23.1.2 Variability

In addition to point estimates, variability is an important statistic to report to let a user know
about the spread of the data. Here we will calculate certain variability statistics.

106

23.1.2.1 Variance

To obtain the variance, use the var (), you only need to specify x= for the data to compute
the variance:

var (mtcars$mpg)

[1] 36.3241

23.1.2.2 Standard deviation

To obtain the standard deviation, use the sd(), you only need to specify x= for the data to
compute the standard deviation:

sd(mtcars$mpg)

[1] 6.026948

23.1.2.3 Max and Min

To obtain the max and min, use the max() and min(), respectively. You only need to specify
the data as the first argument to compute the max and min:

max (mtcars$mpg)

[1] 33.9

min(mtcars$mpg)

(1] 10.4

23.1.2.4 Q1 and Q3
To obtain the Q1 and Q3, use the quantile() and specify the desired quantile with probs=.

You only need to specify the data as the first argument and probs= (as a decimal) to compute
the Q1 and Q3:

107

quantile(mtcars$mpg, .25)

25%
15.425

quantile (mtcars$mpg, .75)

75%
22.8

23.1.3 Associations

In statistics, we may be interested on how different variables are related to each other. These
associations can be represented in a numerical value.

23.1.3.1 Continuous and Continuous

When we measure the association between to continuous variables, we tend to use a correlation
statistic. This statistic tells us how linearly associated are the variables are to each other.
Essentially, as one variable increases, what happens to the other variable? Does it increase
(positive association) or does it decrease (negative association). To find the correlation in
R, use the cor(). You will need to specify the x= and y= which represents vectors for each
variable. Find the correlation between mpg and hp from the mtcars data set.

cor (mtcars$mpg, mtcars$hp)

[1] -0.7761684

23.1.3.2 Categorical and Continuous

When comparing categorical variables, it becomes a bit more nuanced in how to report asso-
ciations. Most of time you will discuss key differences in certain groups. Here, we will talk
about how to get the means for different groups of data. Our continuous variable is the mpg
variable, and our categorical variable is the cyl variable. Both are from the mtcars data set.
The tapply() allows us to split the data into different groups and then calculate different
statistics. We only need to specify X= of the R object to split, INDEX= which is a list of factors
or categories indicating how to split the data set, and FUN= which is the function that needs
to be computed. Use the tapply () and find the mean mpg for each cyl group: 4, 5, and 6.

108

tapply (mtcars$mpg, list(mtcars$cyl), mean)

4 6 8
26.66364 19.74286 15.10000

23.1.3.3 Categorical and Categorical

Reporting the association between two categorical variables is may be challenging. If you
have a 2 x 2 table, you can report a ratio of association. However, any other case may be
challenging. You can report a hypothesis test to indicate an association, but it does not
provide much information about the effect of each variable. You can also report row, column,
or table proportions. Here we will talk about creating cross tables and report these proportions.
To create a cross table, use the table() and use the first two arguments to specify the two
categorical variables. Create a cross tabulation between cyl and carb from the mtcars data
set.

table(mtcars$cyl, mtcars$carb)

123468
4560000
6200410
8043601

Notice how the first argument is represented in the rows and the second argument is in the
columns. Now create table proportions using both of the variables. You first need to create
the table and store it in a variable and then use the prop.table().

prop.table(table(mtcars$cyl, mtcars$carb))

1 2 3 4 6 8
4 0.15625 0.18750 0.00000 0.00000 0.00000 0.00000
6 0.06250 0.00000 0.00000 0.12500 0.03125 0.00000
8 0.00000 0.12500 0.09375 0.18750 0.00000 0.03125

To get the row proportions, use the argument margin = 1 within the prop.table().

109

prop.table(table(mtcars$cyl, mtcars$carb),
margin = 1)

1 2 3 4 6 8
4 0.45454545 0.54545455 0.00000000 0.00000000 0.00000000 0.00000000
6 0.28571429 0.00000000 0.00000000 0.57142857 0.14285714 0.00000000
8 0.00000000 0.28571429 0.21428571 0.42857143 0.00000000 0.07142857

To get the column proportions, use the argument margin = 2 within the prop.table().

prop.table(table(mtcars$cyl, mtcars$carb),
margin = 2)

1 2 3 4 6 8
4 0.7142857 0.6000000 0.0000000 0.0000000 0.0000000 0.0000000
6 0.2857143 0.0000000 0.0000000 0.4000000 1.0000000 0.0000000
8 0.0000000 0.4000000 1.0000000 0.6000000 0.0000000 1.0000000

23.2 Summarizing with Tidyverse

library(magrittr)
library(tidyverse)

-- Attaching packages ---—————--"--"""""""""""""""""""""--—— tidyverse 1.3.2 --
v ggplot2 3.4.0 v purrr 1.0.0

v tibble 3.1.8 v dplyr 1.0.10

v tidyr 1.2.1 v stringr 1.5.0

v readr 2.1.3 v forcats 0.5.2

-- Conflicts ——————————————————————— tidyverse_conflicts() --
X tidyr::extract() masks magrittr::extract()

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

X purrr::set_names() masks magrittr::set_names()

110

f <- function(x){

mtcars %>% split(~.$cyl) %>% map(~shapiro.test(.$mpg))

return(1)}
g <- function(x){

mtcars %>} group_by(cyl) %>% nest() %>} mutate(shapiro =

return(1)}
bench: :mark(f(1),g(1))

A tibble: 2 x 6

expression min median “itr/sec” mem_alloc

<bch:expr> <bch:tm> <bch:tm>
1 £(1) 402.6us 432.6us
2 g(1) 11.6ms 11.7ms

<dbl> <bch:byt>
2258. 134.23KB
83.5 3.65MB

111

“gc/sec”
<dbl>
16.9

9.03

map(data, ~shapiro.test(.$mpg)))

24 Graphics

Through out this chapter, we use certain notations for different components in R. To begin,
when something is in a gray block, _, this indicates that R code is being used. When I am
talking about an R Object, it will be displayed as a word. For example, we will be using
the R object mtcars. When I am talking about an R function, it will be displayed as a
word followed by an open and close parentheses. For example, we will use the mean function
denoted as mean() (read this as “mean function”). When I am talking about an R argument
for a function, it will be displayed as a word following by an equal sign. For example, we
will use the data argument denoted as data= (read this as “data argument”). When I am
referencing an R package, I will use :: (two colons) after the name. For example, in this
tutorial, I will use the ggplot2:: (read this as “ggplot2 package”) Lastly, if I am displaying
R code for your reference or to run, it will be displayed on its own line. There are many
components in R, and my hope is that this will help you understand what components am I
talking about.

24.1 Base R Plotting

24.1.1 Introduction

This tutorial provides an introduction on how to create different graphics in R. For this tutorial,
we will focus on plotting different components from the mtcars data set.

24.1.2 Contents

1. Basic
2. Grouping
3. Tweaking

112

24.1.3 Basic Graphics

Here we will use the built-in R functions to create different graphics. The main function that
you will use is the plot(). It contains much of the functionality to create many different
plots in R. Additionally, it works well for different classes of R objects. It will provide many
important plots that you will need for a certain statistical analysis.

24.1.4 Scatter Plot

Let’s first create a scatter plot for one variable using the mpg variable. This is done using the
plot () and setting the first argument x= to the vector.

plot(mtcars$mpg)
@)
o
o
5 8 o o
Q o
E 0 ©
& | o
2 o o
= o | oo O o O
O N o) o o)
E ° %0
S o °© o ©o °© o
o)
o _| 00
T | | | | | |
0 5 10 15 20 25 30
Index

Notice that the x-axis is the index (which is not informative) and the y-axis is the mpg values.

Let’s connect the points with a line. This is done by setting the type= to "1".

plot (mtcars$mpg, type = "1")

113

mtcars$mpg

10 15 20 25 30

I I I I I I I
0 5 10 15 20 25 30

Index

Let’s add the points back to the plot and keep the lines. What we are going to do is first
create the scatter plot as we did before, but we will also use the lines() to add the lines.
The lines() needs the x= which is a vector of points (mpg). The two lines of code must run

together.

plot(mtcars$mpg)
lines(mtcars$mpg)

mtcars$mpg

10 15 20 25 30

Index

Now, let’s create a more realistic scatter plot with 2 variables. This is done by specifying the
y= with another variable in addition to the x= in the plot=. Plot a scatter plot between mpg
and disp.

plot(mtcars$mpg,mtcars$disp)

114

© o
o — o
0 00 o o
2 9 _
% ® 0 oo
@ o
S | o
S O 0. o
8 | O 08 O o
— O 8 O o
| | | | |
10 15 20 25 30
mtcars$mpg

Now, let’s change the the axis labels and plot title. This is done by using the arguments main=,
xlab=, and ylab. The main= changes the title of the plot.

24.1.5 Histogram

To create a histogram, use the hist(). The hist() only needs x= which is numerical vector.
Create a histogram with the mpg variable.

hist(mtcars$mpg)

Histogram of mtcars$mpg

12

Frequency

0 2 4 6 8
I

I I I I I I
10 15 20 25 30 35

mtcars$mpg

If you want to change the number of breaks in the histogram, use the breaks=. Create a new
histogram of the mpg variable with ten breaks.

115

hist (mtcars$mpg, breaks = 10)

Histogram of mtcars$mpg

Lo —
> —
(6]
T ¥ -
>
O —
(0]
L o~
O —
| I I I |
10 15 20 25 30
mtcars$mpg

The above histograms provide frequencies instead of relative frequencies. If you want relative
frequencies, use the freq= and set it equal to FALSE in the hist ().

hist(mtcars$mpg, freq = FALSE)

Histogram of mtcars$mpg

2 g
(2] o
s o
a
o
O_ 1
o | | | | [|
10 15 20 25 30 35
mtcars$mpg

116

24.1.6 Density Plot

A density plot can be used instead of a histogram. This is done by using the density() to
create an object containing the information to create density function. Then, use the plot ()
to display the plot. The only argument the density () needs is the x= which is the data to be
used. Create a density plot the mpg variable.

plot(density (mtcars$mpg))

density.default(x = mtcars$mpg)

0.06
I

Density
0.03
|

0.00
I

I I I I
10 20 30 40

N =32 Bandwidth =2.477

Now, if we want to overlay the density function over a histogram, use the lines() with the
output from the density() as its main input. First create the histogram using the hist ()
and setting the freq= to FALSE. Then use the 1lines() to overlay the density. Make sure to
run both lines together.

hist (mtcars$mpg, freq = FALSE)
lines(density(mtcars$mpg))

117

Histogram of mtcars$mpg

_ v
2 <
5 o _
= \
a / N
L1 _—\\\\\\\
o ~
Q |
o [[[[[|
10 15 20 25 30 35

mtcars$mpg

24.1.7 Box Plots

A commonly used plot to display relevant statistics is the box plot. To create a box plot use
the boxplot (). The function only needs the x= which specifies the data to create the box plot.
Use the box plot function to create a box plot on for the variable mpg.

boxplot (mtcars$mpg)

o _| I
(40} |
o | |
I\ :
o _|

AN

n _|

— :
o | .
—

If you want to make the box plot horizontal, use horizontal= and set it equal to TRUE.

boxplot(mtcars$mpg, horizontal = TRUE)

118

I I I I I
10 15 20 25 30

24.1.8 Bar Chart

A histogram shows you the frequency for a continuous variable. A bar chart will show you the
frequency of a categorical or discrete variable. To create a bar chart, use the barplot (). The
main argument it needs is the height= which needs to an object from the table(). Create a
bar chart for the cyl variable.

barplot (table(mtcars$cyl))

12

0 2 46 8
I

24.1.9 Pie Chart

While I do not recommend using a pie chart, R is capable of creating one using the pie(). It
only needs the x= which is a vector numerical quantities. This could be the output from the
table(). Create a pie chart with the cyl variable.

119

pie(table(mtcars$cyl))

4

24.1.10 Grouping

Similar to obtaining statistics for certain groups, plots can be grouped to reveal certain trends.
We will look at a couple of methods to visualize different groups.

24.1.10.1 One Variable Grouping

Two ways to display groups is by using color coding or panels. I will show you what I think
is the best way to group variables. There may be better ways to do this, such as using the
ggplot2 package. Before we begin, create three new R objects that are a subset of the mtcars
data set into 3 different data sets with for the three different values of the cyl variable: “4”,
“6”, and “8”. use the subset() to create the different data sets. Name the new R objects
mtcars_4, mtcars_6, and mtcars_8, respectively.

mtcars_4 <- subset(mtcars, cyl == 4)
mtcars_6 <- subset(mtcars, cyl == 6)
mtcars_8 <- subset(mtcars, cyl == 8)

24.1.10.1.1 Scatter Plot

To create different colors points for their respective label associated cyl variable. First create
a base scatter plot using the plot () to set up the plot. Then one by one, overlay a set of new
points on the base plot using the points(). The first two arguments should be the vectors
of data from their respective R object subset. Also, use the col= to change the color of the
points. The col= takes either a string or a number.

plot (mtcars$mpg, mtcars$disp)

points (mtcars_4%$mpg, mtcars_4$disp, col = "red")
points(mtcars_6$mpg, mtcars_6$disp, col = "blue")
points (mtcars_8$mpg, mtcars_8$%$disp, col = "green")

120

o _
5]
2 9 _
eé} ™ o
g B o
& O O. o
8 B) o 8 O o
— O 8 O o
[I I I [
10 15 20 25 30
mtcars$mpg

24.1.10.1.2 Histogram

Now, it us more difficult to overlay histograms on a plot to different colors. Therefore, a panel
approach may be more beneficial. This can be done by setting up R to plot a grid of plots.
To do this, use the par() to tell R how to set up the grid. Then use the mfrow=, which is
a vector of length two, to set up a grid. The mfrow= usually has an input of c(ROWS,COLS)
which states the number of rows and the number of columns. Once this is done, the next plots
you create will be used to populate the grid.

par (mfrow=c(1,3))
hist(mtcars_4$mpg)
hist(mtcars_6$mpg)
hist(mtcars_8$mpg)

121

Histogram of mtcars_4$mpc¢ Histogram of mtcars_6%mpc Histogram of mtcars_8$mpc

N N ~ —
© 4
o -
2y 2y 2y
c c c ¥ 7
(3] (3] (3]
> — — — =] — — — >
[on [on [on
o o O
L L L
~ 4
-
o - o - o -
1T 111711 1T 1T T 1T 1 1T 1T T 1T 1
20 24 28 32 17 19 21 10 14 18
mtcars_4$mpg mtcars_63$mpg mtcars_8%mpg

Every time you use the par (), it will change how graphics are created in an R session. There-
fore, all your plots will follow the new graphic parameters. You will need to reset it by typing
dev.off ().

24.1.10.1.3 Bar Chart

To visualize two categorical variables, we can use a color-coded bar chart to compare the
frequencies of the categories. This is simple to do with the barplot (). First, use the table()
to create a cross-tabulation of the frequencies for two variables. Then use the boxplot () to
visualize both variables. Then use legend= to create a label when the bar chart is color-coded.
Additionally, use the beside= argument to change how the plot looks. Use the code below to
compare the variables cyl and am variable.

barplot(table(mtcars$cyl, mtcars$am), beside = TRUE, legend = rownames(table(mtcars$cyl, mtc:

122

12

|
00N
0o A

0 2 4 6 8
I

0 1
Notice that I use the rownames() to label the legend.
24.1.11 Tweaking
24.1.11.1 Labels
The main tweaking of plots I will talk about is changing the the axis label and titles. For the
most part, each function allows you to use the main=, xlab=, and ylab=. The main= allows
you to change the title. The xlab= and ylab= allow you to change the labels for the x-axis
and y-axis, respectively. Create a scatter plot for the variables mpg and disp and change the

labels.

plot (mtcars$mpg, mtcars$disp, main = "MPG vs Displacement", xlab = "MPG", ylab = "Displaceme:

MPG vs Displacement

@ @]
o h— O
GC) o0 o O
5 8 - &
Q o™ O OO0
< @)
- @]
B 7] o o
° 5 © %2 °
o @]
— @) 8 O o
[[[[[
10 15 20 25 30

MPG

123

24.2 ggplot2

24.2.1 Introduction

The ggplot2:: provides a set of functions to create different graphics. For more information
on plotting in ggplot2::, please visit the this excellent resource. Here we will discuss some
of the basics to the ggplot2:: . To me,ggplot2::‘creates a plot by adding layers to
a base plot. The syntax is designed for you to change different components of
a plot in an intuitive manner. For this tutorial, we will focus on plotting
different components from thempg’ data set.

24.2.1.1 Contents

1. Basic
2. Grouping
3. Themes/Tweaking

24.2.2 Basics

To begin, the ggplot2:: really works well when you are using data frames. If you have any
output that you want to plot, convert into to a data frame. Once we have our data set, the
first thing you would want to do is specify the main components of your base plot. This will
be what will be plotted on your x-axis, and what will be plotted on your y-axis. Next, you
will create the the type of plot. Lastly, you will add different layers to tweak the plot for
your needs. This can be changing the layout or even overlaying another plot. The ‘ggplot2::“
provides you with tools to do almost everything you need to create a plot easily.

Before we begin plotting, load the ggplot2:: in R.

library(ggplot2)

Now, when we create a base plot, we will use the ggplot (). This will initialize the data that
we need to use with the data= and how to map it on the x and y axis with the mapping=.
With the mapping=, you will need to use the aes() which constructs the mapping function
for the base plot. The aes() requires the x= and optionally uses the y= to set which values
represents the x and y axis. The aes() also accepts other arguments for grouping or other
aesthetics.

Before we begin, create a new variable in mtcars called ind and place a numeric vector which
contains integers from 1 to 32.

124

https://ggplot2.tidyverse.org/

mtcars$ind <- c(1:32)

Now, let’s create the base plot and assign it to gg_1. Use the ggplot () and set mtcars as its
data and the variable ind as x= and mpg as the y=

gg_1 <- ggplot(mtcars, aes(ind, mpg))

This base plot is now used to create certain plots. Plots are created by adding functions to
the base plot. This is done by using the + operator and then a specific ggplot2:: function.
Below we will go over some of the functions necessary.

24.2.3 Scatter Plot

To create a scatter plot in ggplot2::, add the geom_point() to the base plot. You do not
need to specify any arguments in the function. Create a scatter plot to gg_1

gg_1 + geom_point()

35-

30- [J []

mpg

15- 2 ° 2 L]

10- [J

ind

If we want to put lines instead of points, we will need to use the geom_point (). Change the
points to a line.

125

gg_1 + geom_line()

35-

30-

25-

mpg

20-

15-

10-
0 10 20 30
ind

To overlay points to the plot, add geom_point () as well as geom_line(). Add points to the
plot above.

gg_1 + geom_point() + geom_line()

126

35-

30-

25-

mpg

20 -

15-

10-

ind
To create a 2 variable scatter plot. You will just need to specify the x= and y= in the aes().
Create a base plot using the mtcars data set and use the mpg and disp as the x and y variables,

respectively, and assign in it to gg_2

gg_2 <- ggplot(mtcars, aes(mpg, disp))

Now create a scatter plot using gg_2.

gg_2 + geom_point()

127

[)
400 - ®
° [] ° [)
[}

300 - @
o
[72] [] o O
ko] °

[]
200 -
[} [} °
° e ©
'S °
100 - * °
o) [] °
10 15 20 25 30 35
mpg

24.2.4 Histogram and Density Plot

To create a histogram and density plots, create a base plot and specify the variable of interest
in the aes(), only specify one variable. Create a base plot using the mtcars data set and the

mpg variable. Assign it to gg_3.

gg_3 <- ggplot(mtcars, aes(mpg))

To create a histogram, use the geom_histogram().

gg_3 + geom_histogram()

“stat_bin() " using “bins = 30°. Pick better value with “binwidth~.

128

5-

4l

3

5]

1-I I

Al 111 111
10 15 20 25 30 35

mpg

count

The above plot shows a histogram, but the number of bins is quite large. We can change

the bin width argument, binwidth=, the the geom_histogram(). Change the bin width to
seven.

gg_3 + geom_histogram(binwidth = 7)

10-
€
>
o
&)

5 -

0 -

1 1 1 1
10 20 30 40
mpg

129

24.2.4.1 Density Plot
To create a density plot, use the geom_density(). Create a density plot for the mpg variable.

gg_3 + geom_density()

0.06 -
>, 0.04 -
B
[
(O]
©

0.02-

0.00-

10 15 20 25 30 35
mpg

24.2.4.2 Both

Similar to adding lines and points in the same plot, you can add a histogram and a den-
sity plot by adding both the geom_histogram() and geom_density(). However, in the
geom_histogram(), you must add aes(y=..density..) to create a frequency histogram.
Create a plot with a histogram and a density plot.

gg_3 + geom_histogram(aes(y=..density..),bins=7) +
geom_density ()

Warning: The dot-dot notation (°..density..) was deprecated in ggplot2 3.4.0.
i Please use “after_stat(density)™ instead.

130

0.075-

0.050 -

density

0.025-

0.000 -

10 20 30
mpg

24.2.5 Box Plots

If you need to create a box plot, use the stat_boxplot (). Create a boxplot for the variable
mpg. All you need to do is add stat_boxplot().

gg_3 + stat_boxplot()

131

0.4-

0.2-

00- —— (]

_0.2-

_0.4-
10 15 20 25 30 35

mpg

24.2.6 Bar Charts

Creating a bar chart is similar to create a box plot. All you need to do is use the stat_count ().
First create a base plot using the mtcars data sets and the cyl variable for the mapping and
assign it to gg_4.

gg_4 <- ggplot(mtcars, aes(cyl))

Now create the bar plot by adding the stat_count ().

132

gg_4 + stat_count()

10-
c
>
o
o

5-

O-

3 4 5 6 7 8 9
cyl

24.2.7 Grouping

The ‘ggplot2::“ easily allows you to create plots from different groups. We will go over some
of the arguments and functions to do this.

24.2.7.1 One Variable Grouping

24.2.7.1.1 Scatter Plot

To begin, we want to specify the grouping variable within the aes() with the color=. Ad-
ditionally, the argument works best with a factor variable, so use the factor() to create a
factor variable. Create a base plot from the mtcars data set using mpg and disp for the x
and y axis, respectively, and set the color= equal to the factor (cyl). Assign it the R object

gg_b.

gg_b5 <- ggplot(mtcars, aes(mpg, disp, color=factor(cyl)))

Once the base plot is created, ‘ggplot2::* will automatically group the data in the plots. Create
the scatter plot from the base plot.

133

gg_ 5 + geom_point()

[
[}
[]
400 - °
[} ¢ [} C
. factor(cyl)
o 300~ [4 o 4
%) e oo
© [)) 6
o) 8
200-
e o °
° o ©
L [)
100 - ¢ .
[] Y [] °
10 15 20 25 30 35
mpg

If you want to change the shapes instead of the color, use the shape=. Create a base plot from
the mtcars data set using mpg, and disp for the x and y axis, respectively, and group it by
cyl with the shape=. Assign it the R object gg_86.

gg_6 <- ggplot(mtcars, aes(mpg, disp, shape=factor(cyl)))
gg_6 + geom_point()

134

400-]
| | | |
u u
- factor(cyl)
i [
o 300 o 4
[%2) H E N
o A A 6
A)
200-
A A A
A e °©
[) []
100 - ° -
° 'Y ° °
10 15 20 25 30 35
mpg

24.2.7.1.2 Histograms

Histograms can be grouped by different colors. This is done by using the £ill= within the
aes() in the base plot. Assign it the R object gg_7.

ge_7 <- ggplot(mtcars, aes(mpg, fill = factor(cyl)))

Now create a histogram from the base plot gg_7.

gg_7 + geom_histogram(bins = 6, alpha = 0.3)

135

7.5~

factor(cyl)
€ 50- 4
3
3 6
8
2.5-
0.0-
10 20 30
mpg

Sometimes we would like to view the histogram on separate plots. The facet_wrap() and
the flact_grid() allows this. Using either function, you do not need to specify the grouping
factor in the aes(). You will add facet_wrap() to the plot. It needs a formula argument
with the grouping variable. Using the R object gg_3 create side by side plots using the cyl
variable. Remember to add geom_histogram().

gg_3+geom_histogram() + facet_wrap(~ cyl)

“stat_bin()~ using “bins = 30°. Pick better value with “binwidth-.

136

5=

3-

COUI’]t

Jm ||| |\ il

35 10 25 30 3510 25 30 35
mpg

24.2.7.1.3 Density Plot

Similar to histograms, density plots can be grouped by variables the same way. Using gg_7,
create color-coded density plots. All you need to do is add geom_density().

gg_7 + geom_density(alpha=0.3)

137

0.25-

0.20-

factor(cyl)

0.15-
[]e
[]o
0.10-
L]e

0.05-

density

0.00-

10 15 20 25 30 35
mpg

Using gg_3, create side by side density plots. You need to do is add geom_density() and
facet_wrap() to group with the cyl variable.

gg_3 + geom_density() + facet_wrap(~ cyl)

0.25-

0.20-

0.05-

0.00 -
10 15 20 25 30 3510 15 20 25 30 3510 15 20 25 30 35
mpg

138

24.2.7.1.4 Bar Chart

To create a side by side bar plot, you can use the facet_wrap() with a grouping variable.

Using gg_4, create a side by side bar plot using vs as the grouping variable. Remember to
add stat_count () as well.

gg_4 + stat_count() + facet_wrap(~vs)

10-

count

1 1
8 9 3 4 5 6 7 8 9
cyl

If you want to compare the bars from different group in one plot, you can use the £ill= from
the aes(). The £ill= just needs a factor variable (use factor()). First create a base plot
using the data mtcars, variable cyl and grouping variable vs. Assign it to gg_8.

gg_8 <- ggplot(mtcars, aes(cyl, fill = factor(vs)))

Now create a bar chart by adding stat_count ().

gg_8 + stat_count()

139

count

10-
factor(vs)
o
H -
5_
0_
3 4 5 6 7 8 9

cyl

If you want to grouping bars to be side by side, use the position= in the stat_count() and
set it equal to "dodge". Create the bar plot using the position = "dodge".

gg_8 + stat_count(position = "dodge")

10-
factor(vs)
c
2 W o
B
5_
0- -
3 4 5 6 7 8 9

cyl

140

24.2.8 Themes/Tweaking

In this section, we will talk about the basic tweaks and themes to ggplot2::. However.
ggplot2:: is much more powerful and can do much more. Before we begin, lets look at object
gg_9 to understand the plot. To view a plot, use the plot ().

plot(gg_9)
400 -
factor(cyl)
o 300~ 4
(%))
= ° e 6
® 8
200 -
e o °
[
100-
10 15 20 25 30 35
mpg
24.2.8.1 Title

To change the title, add the ggtitle() to the plot. Put the new title in quotes as the first
argument. Change the title for gg_9.

gg_ 9 + ggtitle("Scatter Plot")

141

Scatter Plot

[d
[
[]
400 - °
° [] ° []
. factor(cyl)
o 300- e o 4
%) o o0
© ® e 6
® e 8
200-
e o °
° o ©
® [)
100~ ‘ o
{ Y { °
10 15 20 25 30 35
mpg
24.2.8.2 Axis

Changing the labels for a plot, add the x1ab() and ylab(), respectively. The first argument

contains the phrase for the axis. Change the axis labels for gg_9.

gg_9 + xlab("MPG") + ylab("Displacement")

142

400 -

g factor(cyl)
£ 300-
S 4
(&)
@) ® 6
7]
— []
A 8

200 -

e o °
[}
100-
10 15 20 25 30 35

MPG

24.2.8.3 Themes
If you don’t like how the plot looks, ggplot2:: has custom themes you can add to the plot to
change it. These functions usually are formatted as theme_* (), where the * indicates different

possibilities. I personally like how theme_bw() looks. Change the theme of gg_9.

gg_9 + theme_bw()

143

[
[
[
400 - °
° [] ° []
. factor(cyl)
300 - L g
o 4
K% o oo
o ® ® 6
o ° 8
200 -
o O °
[]
1001
10 15 20 25 30 35
mpg

Additionally, you can change certain part of the theme using the theme (). I encourage you to
look at what are other possibilities.

24.2.9 Saving plot

If you want to save the plot, use the ggsave (). Read the help documentation for the functions

capabilities.

144

Part VII

Reporting Data

145

25 Quarto Documents

25.1 Introduction

Quarto is a file type used to create technical reports while including both R code, or other
programming languages, and output in a document. A qmd! file is a fancy R Script containing
extra capabilities. Additionally, qmd files allow for citations, footnotes, mathematical expres-
sions, links, and much more. Once the document is finished, it can be rendered to a word file,
pdf, html file, and much more. Quarto is the considered the next generation of RMarkdown.

25.2 Anatomy of a Quarto Document

There are three main components in an qmd file: the YAML header, R code, and basic text.

The YAML header contains information on how to render the document. It is located at the
beginning of the document surrounded by 3 dashes (---) above and below it. For starters, the
YAML header will contain a ‘title’, ‘author’, ‘date’, and ‘output’ line.

The R code is located in a block known as chunks. A chunk tells RStudio to read the next
lines as code. A chunk begins with three back ticks followed by {r} and ends with three back
ticks. Everything in between the back ticks will be executed by R. In RStudio, a chunk can
be inserted using the keyboard shortcut ctrl+alt+I or cmd+option+I.

An example of an R chunk is shown below:

S {r}

mean (mtcars$mpg)

The R chunk will be rendered as below:

mean (mtcars$mpg)

LQMD is the file extension to use the Quarto engine. For this document Quarto and QMD are used inter-
changeably.

146

https://quarto.org/
https://rmarkdown.rstudio.com/

Notice the chunk includes the code in a block followed by the output from the console.

The last component of an qmd document is the text. Write anywhere in the document, and it
will be rendered as is.

25.3 Chunk Options

R chunks have options that will alter how the code or the output is rendered. The chunk
options can be set either globally to affect the entire qmd document or locally to affect only
an individual chunk. For more information about chunk options, visit https://yihui.org/knit
r/options/

25.3.1 Global Chunk Options

To set global chunks options, add the two lines to YAML header:

knitr:
opts_chunk:

Followed by the chunks and R options you want to set:

knitr:
opts_chunk:
eval: false
tidy: styler
R.options:
digits: 2

A couple of recommended chunk options set globally are eval: false, and tidy: styler.
These options make rendering the document easier.

One chunk option is tidy: styler. This tells Quarto to prevent code from printing in a long
line, possibly off the page. For example, look at the output of this chunk:

This comment ts designed to show what happens when all your code is in 1 line. This s fu

Notice the comment being printed off the page. Using the options tidy: styler, the chunk
is rendered as

147

https://yihui.org/knitr/options/
https://yihui.org/knitr/options/

This comment ts designed to show what happens when all
your code is in 1 line. This 1S fine when you are

coding, but when you are putting it in a report, it will
run off the page.

The last 2 lines control how R will compute and print output. R.Options: tells Quarto that
the options R will be changed, and each line after alters options. digits: 2 indicates R to
use 2 significant digits.

25.3.2 Local Chunk Options

Local chunk options can be used to control an individual chunk will behave. To control a
specific chunk, place the option below the {r} identifier and use the #| chunk option indicator.
An example is povided below:

o {r}
#| eval: false
#| tidy: false

mean (mtcars$mpg)

The chunk option eval set to false tells Quarto to not evaluate the code within the chunk.
Notice how the output was not printed the R chunk above. When we set eval to true, the
output is printed:

oA}

#| eval: true
mean (mtcars$mpg)

[1] 20.1

The echo option will control if the code within the chunk should be printed in the document.
This next chunk contains #| echo: true:

mean (mtcars$mpg)

(1] 20.1

148

https://en.wikipedia.org/wiki/Significant_figures

Now the chunk contains #| echo: false:

[1] 20.1

The R Code disappears.

There are chunk options for figures as well. A few options are fig-height, fig-width,
fig-align, and fig-cap.

This chunk contains fig-height: 3.5; fig-width: 3.5; fig-align: left.

o {r}

#| eval: true

#| fig-height: 3.5
#| fig-width: 3.5
#| fig-align: left

plot (mtcars$mpg, mtcars$drat)

Q

10 o
© | o) ° o
;g o _| o ¢} o
5 < 000 g
T 500 © ©
%] o

o Boo? o

® 18

0 0

mtcars$mpg

The chunk options tells RStudio to create an image that is 3.5 inches in height and width, and
align the image to the left.

The following chunk contains fig-height: 3.5; fig-width: 3.5; fig-align: left;
fig-cap: "This is a scatter plot of MTCARS' MPG and DRAT"; label: fig-mtcars.

149

T A}

#| eval: true

#| fig-height: 3.5

#| fig-width: 3.5

#| fig-align: center

#| fig-cap: "This is a scatter plot of MTCARS' MPG and DRAT"
#| label: fig-mtcars

plot(mtcars$mpg, mtcars$drat)

=)

o o)
- — o
o o o
3 o | o o o
3~ coog
I o 00 O o
é _ o

o _| (%oo%o

o 18

0 0

mtcars$mpg

Figure 25.1: This is a scatter plot of MTCARS’ MPG and DRAT

The chunk adds a caption with fig-cap and reference label with 1abel. The label of the plot
can be referenced later in the document. Figure 25.1 can be referenced with @fig-mtcars.

25.3.3 Inline Code

Instead of evaluating code in a chunk, code can evaluated in the text instead. For example, if
we want to write the mean mpg in mtcars is 20.090625, one can type {r} mean(mtcars$mpg),
surrounded by back ticks (), instead of writing the entire number and risk of miscopying the
results.

150

25.4 Formatting

Qmd files contain basic formatting capabilities. The use of the # followed by text creates
a heading. Using two or more # symbols will create subheadings based on the number of
#. A text is idtalicized by surrounding the text with one asterisk (*italicizedx). A text is
boldfaced by surrounding it with 2 asterisk (**boldfaced**).

To create an unordered list, use the - symbol at the beginning of each line. To create a sub-
item, press the tab button twice (4 spaces), then the - symbol. Repeat this method for further
sub-items.

e First Item
e Second Item
— First Sub-Item
% First Sub-Sub-Item
First Sub-Sub-Sub-Item

To created an ordered list, type the number followed by a period for each line. To create
sub-lists, press the tab button twice and order them appropriately.

1. First
2. Second

a. First
b. Second

1) First
2) Second

A block quote is created with the > symbol at the beginning of a line.

Qmd files allows a table to be constructed in 2 ways, manually or using a package such as
the gt package. A table is manually created by using |, :, and -. The first line contains |
and the column names in between. The second line contains | :-|:-| which indicates how the
table is aligned. The location of : symbol just tells RStudio about the alignment. Below is
the example code of Table 25.3:

151

| Letter | Lowercase | Code | Uppercase | Code [
| gmmmmmmeeee= | g 3 || gy | ===y | g====mmmme=gg [
| alpha | α | \alpha I == | --

| beta | β | “\beta" | == | ==

| gamma | γ | \gamma | Γ | ~\Gamma

| delta | δ | “\delta" | Δ | \Delta

| epsilon | ϵ | “\epsilon™ | — | -- |
| zeta | ζ I “\zeta" I == | ==

| eta I η | “\eta® I -- | -- |
| theta | θ I “\theta" | Θ | ~\Theta"

| iota I ι | “\iota~ I -- | -- |
| kappa | κ | “\kappa~ | -- | --

| lambda | λ | “\lambda" | Λ | ~\Lambda~ |
| mu | μ | “\mu” | -- | -- |
| nu I ν | “\nu" I -- | -- I
xi	ξ	“\xi®	ξ¢	“\XiT
pi	π	“\pi-	Π	“\pi~
rho	ρ	“\rho"	-	-
sigma	σ	“\sigma"	Σ	~\Sigma~

tau	τ	“\tau"	-	--
upsilon	υ	“\upsilon~	Υ	~\Upsilon~
phi	ϕ	“\phi~	Φ	“\Phi-
chi	χ	“\chi-	--	--
psi [ψ	“\psi~ I Ψ	“\Psi-		

| omega | ω | “\omega~ | Ω | ~\Omega"

| varepsilon | ε | “\varepsilon” | = | -= [

: LaTeX syntax for greek letters. {#tbl-greektable}

The last line will adds a caption to the table and {#tbl-greektable} creates a label to
reference the table in the text using @tbl-greektable.

The gt function from the gt package creates a table from a data frame or R object. Here is
an example code to create a table from the first 6 rows of the mtcars dataset:

" {r}
#| label: tbl-mtcarsdata
#| eval: true

mtcars |>

head() |[>
gt::gt) >

152

mpg cyl disp hp drat wt qgsec vs am gear carb

21.0 6 160 110 3.90 2.62 165 O 1 4 4
21.0 6 160 110 3.90 2.8 170 O 1 4 4
22.8 4 108 93 38 232 186 1 1 4 1
214 6 258 110 3.08 3.21 194 1 0 3 1
18.7 8§ 360 175 3.15 344 170 O 0 3 2
18.1 6 225 105 2.76 3.46 202 1 0 3 1

Table 25.1

gt::tab_caption("The MTCARS Dataset")

Notice that Table 25.1 is easily produced using the gt () function with a caption

Table Table 25.1 is referenced by using the label created in the chunk and the @tbl-mtcarsdata.
To install gt run the following line in your console:

install.packages("gt")

25.5 Citations and Referneces

Qmd documents contains capabilities to add citations and a bibliography. For ex-
ample, to cite this textbook (mendenhallSecondCourseStatistics20127), use the
@ symbol followed by a citation identifier from the .bib file surrounded by square
brackets, [@mendenhallSecondCourseStatistics2012]. To cite your textbook again
(mendenhallSecondCourseStatistics2012?) without the authors names, use a - sign in
front of the @ symbol, [-@mendenhallSecondCourseStatistics2012]. To cite multiple books
(casellaStatisticallnference1990?; rohatgilntroductionProbabilityStatistics20157;
resnickProbabilityPath2014?; lehmannTheoryPointEstimation1998?7; lehman-
nTestingStatisticalHypotheses20057), add each citation inside the square brackets with
the @ symbol and separate them with semicolons, [@casellaStatisticalInferencel990;
OrohatgilntroductionProbabilityStatistics2015; QresnickProbabilityPath2014;
@lehmannTheoryPointEstimation1998; @lehmannTestingStatisticalHypotheses2005].

The references will be added automatically at the end of the document.

In order to use citations and references, the qmd file needs needs a .bib file containing all
the information of the references. First, save the .bib file in the same folder (directory) as

153

your gmd file. Then add the line bibliography: NAME.bib to the YAML header. Make any
changes appropriately to the line, such as the name of the .bib file.

25.5.1 .bib File

The .bib file is an ordinary text file containing “bib” entries with information about each
reference. Below is an example bib entry about R:

@Manual{,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2023},
url = {https://www.R-project.org/},

Creating a .bib file is tedious; however, there are reference managers that can help. I recom-
mend using Zotero, an open-source reference manager designed to import and manage citations.
Once a citation is in Zotero, you can export your library as a .bib file. Make sure to check
your references in Zotero for any mistakes.

25.6 Math

Quarto is capable of writing mathematical formulas using LaTeX code. A mathematical symbol
can be written inline using single $ signs. For example, α is viewed as o in a document.
To write mathematical formulas on its own line use $$. For example, $$Y=mX+b$$ is viewed
as

Y=mX+b

25.6.1 Mathematical Notation

Table 25.2: LaTeX syntax for common examples.

Notation code
r=y $x=y$
x>y $x>y$

154

https://www.zotero.org/

Notation

code

<y
T >y
<y

QPM‘H%ﬂ 88 8 8
<8 < <

8
m
BN

rCA
zCA
TUA
TNA

{1,2,3}

[f(x)

dx

{g;j(m)dx}

S

H

:1xi

Hizl x;

111’nm~>0

flx)

X ~T(a,B)

$x<y$

$x\geq v$

$x\leq y$

$x~{y}$

x_{y}

$\bar x$

$\hat x$

$\tilde x$

\frac{xHy}
$\frac{\partial x}{\partial y}$
$x\in A$

$x\subset A$

$x\subseteq A$

$x\cup A$

$x\cap A$

$\{1,2,3\}$

$\int_a~bf (x)dx$
$\left\{\int_a~bf (x)dx\right\}$
$\sum™n_{i=1}x_i$
$\prod™n_{i=1}x_i$
$\1im_{x\toO0}f (x)$

$X\sim \Gamma(\alpha,\beta)$

25.6.2 Greek Letters

Table 25.3: LaTeX syntax for greek letters.

Letter Lowercase Code Uppercase Code
alpha o \alpha - —
beta I3 \beta - -
gamma, ¥ \gamma r \Gamma
delta 0 \delta A \Delta
epsilon € \epsilon - -
zeta ¢ \zeta - —
eta n \eta - -
theta 0 \theta © \Theta
iota L \iota - -
kappa K \kappa - -

155

Letter Lowercase Code Uppercase Code

lambda A \lambda A \Lambda
mu I \mu - -

nu v \nu - -

xi 13 \xi = \X1i

pi T \pi 11 \pi
rho p \rho - -
sigma o \sigma by \Sigma
tau T \tau - -
upsilon v \upsilon T \Upsilon
phi 1) \phi o \Phi
chi X \chi — —

psi Y \psi LG \Psi
omega w \omega Q \Omega
varepsilon € \varepsilon - -

25.7 Rendering a Document

A gmd file can be rendered into either an html file, pdf document or word document. Rendering
the qmd file to an html file or word document can be easily done using the knit button above.
However, rendering the qmd file to a pdf document requires LaTeX to be installed. There are
two methods to install LaTeX: from the LaTeX website or from R. I recommend installing the
full LaTeX distribution from the https://www.latex-project.org/get/. This provides you with
everything you may need. You can also install it from R:

install.packages("tinytex")
tinytex::install_tinytex()

You will only need to run these lines of code once and then you can render pdf documents
easily.

HTML

format: html

156

https://www.latex-project.org/get/

PDF

format: pdf

Word Document

format: docx

25.8 Resources and Tips

Quarto
e Quarto

¢ Markdown Basics
e Formats

RMarkdown

« RStudio
« Bookdown

YAML

¢ UCLA Resource
¢ Reproducible Research
¢ RMarkdown Crash Course

157

https://quarto.org/
https://quarto.org/docs/authoring/markdown-basics.html
https://quarto.org/docs/reference/
https://rmarkdown.rstudio.com/
https://bookdown.org/yihui/rmarkdown/
https://stats.oarc.ucla.edu/stat/data/rmarkdown/rmarkdown_seminar_flat.html#yaml-header
https://monashdatafluency.github.io/r-rep-res/yaml-header.html
https://zsmith27.github.io/rmarkdown_crash-course/lesson-4-yaml-headers.html

Tips
e Render your document often so it easier to identify problems with rendering

e The Visual Mode in RStudio eases the process of creating a document and makes it more

bearable.

e YAML is tricky with spacing. Make sure that spaces when indenting options. Also make
sure that there are not extra spaces at the end of each line.

25.9 References

158

26 Presentations

159

	Introduction
	Preface
	Installing R
	Installing RStudio
	Installing Quarto
	Installing R Packages
	Topics

	R Programming
	Basic R Programming
	Introduction
	Basic Calculations
	Calculator
	Comparing Numbers
	Help

	Types of Data
	Numeric
	Logical
	POSIX
	Character
	Complex Numbers
	Raw
	Missing

	R Functions
	R Objects
	Assigning objects
	Vectors
	Matrices
	Arrays
	Data Frames
	Lists

	R Packages

	Control Flow
	Indexing
	Vectors
	Matrices
	Data Frames
	Lists

	If/Else Statements
	Example

	for loops
	Basic for loop
	Nested for loops

	break
	next
	while loop
	Basic while loops
	Infinite while loops

	Functional Programming
	Functions
	Built-in Functions
	Generic Functions
	User-built Functions

	*apply Functions
	apply()
	lapply()
	sapply()

	Anonymous Functions

	Scripting and Piping in R
	Commenting
	Scripting
	Beginning of the Script
	Middle of the Script
	End of the Script

	Pipes
	|>
	%>%
	%$%
	%T>%

	Keyboard Shortcuts

	Further Resources
	R Resources
	Programming
	Reticulate and Python
	Rcpp

	Bayesian Programs
	JAGS
	Stan

	Misc
	Missing Semester

	Random Variables and Simulations
	Random Variables
	Random Experiments
	Probability
	Independence
	Random Variables
	Discrete RV
	Continuous RV

	Joint Distributions
	Joint Probability Density Function
	Conditional Density Functions
	Marginal Density Functions
	Independence and Covariance

	Functions of Random Variables
	Method of Distribution Functions
	Method of Transformations
	Method of Moment-Generating Functions

	Models
	Bernoulli Model
	Distribution Functions
	Expected Value
	Variance

	Binomial Model
	Distribution Functions
	Expected Value
	Variance

	Poisson Model
	Distribution Functions
	Expected Value
	Variance

	Negative Binomial Model
	Distribution Functions
	Expected Value
	Variance

	Multinomial Model
	Distribution Functions
	Expected Value
	Variance

	Uniform Model
	Distribution Functions
	Expected Value
	Variance

	Normal Model
	Distribution Functions
	Expected Value
	Variance

	Gamma Model
	Distribution Functions
	Expected Value
	Variance

	Beta Model
	Distribution Functions
	Expected Value
	Variance

	Weibull Model
	Distribution Functions
	Expected Value
	Variance

	Random Number Generator
	Random Number Generation
	Computer Random Number Generation
	Linear Congruential Generators
	Multiple Recursive Generators
	Modulo 2 Linear Generators

	Monte Carlo Methods
	Probability Inverse Transformation
	Composition Method
	Acceptance-Rejection Method
	Box-Muller Methods

	Markov Chain Monte Carlo Methods

	Randomizations
	Permutation Tests
	Permutation Regression

	Monte Carlo Methods
	Monte Carlo Integration
	Monte Carlo Hypothesis Testing
	Monte Carlo Optimization
	Monte Carlo Methods Case Study 1
	Monte Carlo Methods Case Study 2
	Monte Carlo Methods Case Study 3

	Bootstrapping
	Parametric Bootrapping
	Nonparametric Boostrapping

	Data Manipulation, Summarization, and Graphics
	Resources
	How to read this section.
	Importing Data
	Directories
	Importing Data

	Data Manipulation
	Tidyverse
	Loading Data
	CSV Files
	For This Chapter

	The Pipe Operator |>
	Data Transformation
	Summarizing Data
	Grouping
	Subsets
	Creating Variables
	Merging Datasets

	Reshaping Data
	Wide to Long Data
	Long to Wide
	Spliting Variables
	Splitting Rows
	Merging Rows

	Applied Example

	Data Summarization
	Descriptive Statistics
	Point Estimates
	Variability
	Associations

	Summarizing with Tidyverse

	Graphics
	Base R Plotting
	Introduction
	Contents
	Basic Graphics
	Scatter Plot
	Histogram
	Density Plot
	Box Plots
	Bar Chart
	Pie Chart
	Grouping
	Tweaking

	ggplot2
	Introduction
	Basics
	Scatter Plot
	Histogram and Density Plot
	Box Plots
	Bar Charts
	Grouping
	Themes/Tweaking
	Saving plot

	Reporting Data
	Quarto Documents
	Introduction
	Anatomy of a Quarto Document
	Chunk Options
	Global Chunk Options
	Local Chunk Options
	Inline Code

	Formatting
	Citations and Referneces
	.bib File

	Math
	Mathematical Notation
	Greek Letters

	Rendering a Document
	HTML
	PDF
	Word Document

	Resources and Tips
	Quarto
	RMarkdown
	YAML
	Tips

	References

	Presentations

